Loading…

Flow control with noncircular jets

▪ Abstract  Noncircular jets have been the topic of extensive research in the last fifteen years. These jets were identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of fluid mechanics 1999, Vol.31 (1), p.239-272
Main Authors: GUTMARK, E. J, GRINSTEIN, F. F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:▪ Abstract  Noncircular jets have been the topic of extensive research in the last fifteen years. These jets were identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular jets rely solely on changes in the geometry of the nozzle. The applications of noncircular jets discussed in this review include improved large- and small-scale mixing in low- and high-speed flows, and enhanced combustor performance, by improving combustion efficiency, reducing combustion instabilities and undesired emissions. Additional applications include noise suppression, heat transfer, and thrust vector control (TVC). The flow patterns associated with noncircular jets involve mechanisms of vortex evolution and interaction, flow instabilities, and fine-scale turbulence augmentation. Stability theory identified the effects of initial momentum thickness distribution, aspect ratio, and radius of curvature on the initial flow evolution. Experiments revealed complex vortex evolution and interaction related to self-induction and interaction between azimuthal and axial vortices, which lead to axis switching in the mean flow field. Numerical simulations described the details and clarified mechanisms of vorticity dynamics and effects of heat release and reaction on noncircular jet behavior. The research on noncircular jets has also led to technology transfer. A topic that started as an academic curiosity—an interesting flow phenomenon—subsequently has had various industrial applications. The investigations reviewed include experimental, theoretical, numerical, and technological aspects of the subject.
ISSN:0066-4189
1545-4479
DOI:10.1146/annurev.fluid.31.1.239