Loading…
Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2
We study \(f\)-vectors, which are the maximal degree vectors of \(F\)-polynomials in cluster algebra theory. For a cluster algebra is of finite type, we find that positive \(f\)-vectors correspond with \(d\)-vectors, which are exponent vectors of denominators of cluster variables. Furthermore, using...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gyoda, Yasuaki |
description | We study \(f\)-vectors, which are the maximal degree vectors of \(F\)-polynomials in cluster algebra theory. For a cluster algebra is of finite type, we find that positive \(f\)-vectors correspond with \(d\)-vectors, which are exponent vectors of denominators of cluster variables. Furthermore, using this correspondence and properties of \(d\)-vectors, we prove that cluster variables in a cluster are uniquely determined by their \(f\)-vectors when the cluster algebra is of finite type or rank \(2\). |
doi_str_mv | 10.48550/arxiv.1904.00779 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2208508435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2208508435</sourcerecordid><originalsourceid>FETCH-proquest_journals_22085084353</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgKOoPcHvgokPra9LYOoviLI6KxPZVoiXRJPXj3-vg4Oh0cHeMDROM01xKnCr31Pc4mWMaI2bZvMW6XIgkylPOO2zg_RkR-SzjUoou22-oVkFbA0cKDyIDu3G1m0R3KoJ1HpQpP6b8MdpAUTc-kANVn-jolAdbQaWNDgThdSWwDpwyF-B91q5U7WnwZY-NVsvtYh1dnb015MPhbBtnPunAOeYS81RI8d_1BuVZSJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208508435</pqid></control><display><type>article</type><title>Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gyoda, Yasuaki</creator><creatorcontrib>Gyoda, Yasuaki</creatorcontrib><description>We study \(f\)-vectors, which are the maximal degree vectors of \(F\)-polynomials in cluster algebra theory. For a cluster algebra is of finite type, we find that positive \(f\)-vectors correspond with \(d\)-vectors, which are exponent vectors of denominators of cluster variables. Furthermore, using this correspondence and properties of \(d\)-vectors, we prove that cluster variables in a cluster are uniquely determined by their \(f\)-vectors when the cluster algebra is of finite type or rank \(2\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.00779</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Clusters ; Mathematical analysis ; Polynomials ; Vectors (mathematics)</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2208508435?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gyoda, Yasuaki</creatorcontrib><title>Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2</title><title>arXiv.org</title><description>We study \(f\)-vectors, which are the maximal degree vectors of \(F\)-polynomials in cluster algebra theory. For a cluster algebra is of finite type, we find that positive \(f\)-vectors correspond with \(d\)-vectors, which are exponent vectors of denominators of cluster variables. Furthermore, using this correspondence and properties of \(d\)-vectors, we prove that cluster variables in a cluster are uniquely determined by their \(f\)-vectors when the cluster algebra is of finite type or rank \(2\).</description><subject>Algebra</subject><subject>Clusters</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Vectors (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNij0LwjAUAIMgKOoPcHvgokPra9LYOoviLI6KxPZVoiXRJPXj3-vg4Oh0cHeMDROM01xKnCr31Pc4mWMaI2bZvMW6XIgkylPOO2zg_RkR-SzjUoou22-oVkFbA0cKDyIDu3G1m0R3KoJ1HpQpP6b8MdpAUTc-kANVn-jolAdbQaWNDgThdSWwDpwyF-B91q5U7WnwZY-NVsvtYh1dnb015MPhbBtnPunAOeYS81RI8d_1BuVZSJA</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Gyoda, Yasuaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210819</creationdate><title>Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2</title><author>Gyoda, Yasuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22085084353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Clusters</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gyoda, Yasuaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyoda, Yasuaki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2</atitle><jtitle>arXiv.org</jtitle><date>2021-08-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study \(f\)-vectors, which are the maximal degree vectors of \(F\)-polynomials in cluster algebra theory. For a cluster algebra is of finite type, we find that positive \(f\)-vectors correspond with \(d\)-vectors, which are exponent vectors of denominators of cluster variables. Furthermore, using this correspondence and properties of \(d\)-vectors, we prove that cluster variables in a cluster are uniquely determined by their \(f\)-vectors when the cluster algebra is of finite type or rank \(2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.00779</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2208508435 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algebra Clusters Mathematical analysis Polynomials Vectors (mathematics) |
title | Relation between \(f\)-vectors and \(d\)-vectors in cluster algebras of finite type or rank 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Relation%20between%20%5C(f%5C)-vectors%20and%20%5C(d%5C)-vectors%20in%20cluster%20algebras%20of%20finite%20type%20or%20rank%202&rft.jtitle=arXiv.org&rft.au=Gyoda,%20Yasuaki&rft.date=2021-08-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.00779&rft_dat=%3Cproquest%3E2208508435%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22085084353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2208508435&rft_id=info:pmid/&rfr_iscdi=true |