Loading…

Relationship between (micro)structure and functional (photocatalytic and adsorption) properties of anatase–mordenite nanocomposite

Anatase–mordenite nanocomposite was synthesized in situ and characterized by X-ray diffraction analysis, Brunauer–Emmett–Teller measurements, infrared (IR) spectroscopy, electron diffraction measurements, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and scanning and transm...

Full description

Saved in:
Bibliographic Details
Published in:Research on chemical intermediates 2019-05, Vol.45 (5), p.2869-2885
Main Authors: Domoroshchina, Elena, Orekhov, Andrey, Chernyshev, Vladimir, Kuz’micheva, Galina, Kravchenko, Galina, Klechkovskaya, Vera, Pirutko, Larisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anatase–mordenite nanocomposite was synthesized in situ and characterized by X-ray diffraction analysis, Brunauer–Emmett–Teller measurements, infrared (IR) spectroscopy, electron diffraction measurements, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy. It was found that X-ray-amorphous anatase located in the zeolite micropores resulted in a decrease in the specific surface of anatase–mordenite compared to the initial mordenite. Anatase-containing nanoparticles in anatase–mordenite showed round shape and formed nano-associates and conglomerates. The water content in the zeolite cavities in anatase–mordenite was lower compared to mordenite. Anatase–mordenite nanocomposite exhibited higher photocatalytic activity in the model decomposition reaction of methyl orange under ultraviolet (UV) radiation and higher adsorption capacity for extraction of P(V) and As(V) ions from aqueous environment in the dark compared to the initial mordenite or anatase due to an increase in the content of active OH-groups on the nanocomposite surface compared to mordenite and an increase in the specific surface compared to anatase.
ISSN:0922-6168
1568-5675
DOI:10.1007/s11164-019-03767-7