Loading…

Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep

Ethane is the second most abundant component of natural gas in addition to methane, and—similar to methane—is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps 1 – 3 , and through ethane-dependent sul...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2019-04, Vol.568 (7750), p.108-111
Main Authors: Chen, Song-Can, Musat, Niculina, Lechtenfeld, Oliver J., Paschke, Heidrun, Schmidt, Matthias, Said, Nedal, Popp, Denny, Calabrese, Federica, Stryhanyuk, Hryhoriy, Jaekel, Ulrike, Zhu, Yong-Guan, Joye, Samantha B., Richnow, Hans-Hermann, Widdel, Friedrich, Musat, Florin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ethane is the second most abundant component of natural gas in addition to methane, and—similar to methane—is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps 1 – 3 , and through ethane-dependent sulfate reduction in slurries 4 – 7 . Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown 8 . Here we describe ethane-oxidizing archaea that were obtained by specific enrichment over ten years, and analyse these archaea using phylogeny-based fluorescence analyses, proteogenomics and metabolite studies. The co-culture, which oxidized ethane completely while reducing sulfate to sulfide, was dominated by an archaeon that we name ‘ Candidatus Argoarchaeum ethanivorans’; other members were sulfate-reducing Deltaproteobacteria. The genome of Ca . Argoarchaeum contains all of the genes that are necessary for a functional methyl-coenzyme M reductase, and all subunits were detected in protein extracts. Accordingly, ethyl-coenzyme M (ethyl-CoM) was identified as an intermediate by liquid chromatography–tandem mass spectrometry. This indicated that Ca . Argoarchaeum initiates ethane oxidation by ethyl-CoM formation, analogous to the recently described butane activation by ‘ Candidatus Syntrophoarchaeum’ 9 . Proteogenomics further suggests that oxidation of intermediary acetyl-CoA to CO 2 occurs through the oxidative Wood–Ljungdahl pathway. The identification of an archaeon that uses ethane (C 2 H 6 ) fills a gap in our knowledge of microorganisms that specifically oxidize members of the homologous alkane series (C n H 2 n +2 ) without oxygen. Detection of phylogenetic and functional gene markers related to those of Ca . Argoarchaeum at deep-sea gas seeps 10 – 12 suggests that archaea that are able to oxidize ethane through ethyl-CoM are widespread members of the local communities fostered by venting gaseous alkanes around these seeps. An archaeon, ‘ Candidatus Argoarchaeum ethanivorans’, which is involved in the oxidation of ethane observed in anoxic marine habitats, is identified and metabolically characterized.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-019-1063-0