Loading…

A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame

•A two-dimensional mathematical model for the VRFB stack is reported.•Electrolyte distribution is described via flow network equivalence method.•Reversible and irreversible heat sources in stack are determined.•Nonuniform electrolyte distribution dramatically influences discharge capacity. Lumped mo...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2019-03, Vol.151, p.495-505
Main Authors: Zhang, B.W., Lei, Y., Bai, B.F., Xu, A., Zhao, T.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3
cites cdi_FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3
container_end_page 505
container_issue
container_start_page 495
container_title Applied thermal engineering
container_volume 151
creator Zhang, B.W.
Lei, Y.
Bai, B.F.
Xu, A.
Zhao, T.S.
description •A two-dimensional mathematical model for the VRFB stack is reported.•Electrolyte distribution is described via flow network equivalence method.•Reversible and irreversible heat sources in stack are determined.•Nonuniform electrolyte distribution dramatically influences discharge capacity. Lumped models have been widely adopted to predict the performance of the vanadium redox flow battery (VFRB) stack, which mainly due to its simplicity in modeling transient behaviors during operation cycles. However, average transport and electrochemical properties in previous lumped models make it impossible to obtain the information of electrolyte distributions in stacks. To address this issue, in this work, we report a two-dimensional mathematical model for a VRFB stack considering the effect of nonuniform electrolyte distributions in the flow frame via a flow network equivalence method. With this new model, battery performance and its temperature at different operating conditions are determined accurately. It is demonstrated that (i) temperature fluctuations of the stack reach up to 10 K at different current densities and flow rates; (ii) 25% blockage in the middle cell can lead to the capacity reduction by up to 80%.
doi_str_mv 10.1016/j.applthermaleng.2019.02.037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2209580720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118378761</els_id><sourcerecordid>2209580720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3</originalsourceid><addsrcrecordid>eNqNkc1u3SAQha0qkZomfQekdmsH8LUxUjdRlJ9KkbJJ1gjDkHBrgzPgpPcp-srh6naTXTbAoPnO0cypqp-MNoyy_nzb6GWZ8jPgrCcITw2nTDaUN7QVX6oTNoi27nraH5V328l60zL2tfqW0pZSxgexOan-XZD8FmvrZwjJx6AnMuuiWA5v9kW0MBEXkbzqoK1fZ4Jg41_ipvhGRp0z4I6krM2fRHwwEZeIhQ1PJMSwBl_QmcAEJmOcdhmI9SmjH9dc3ApBitlBzKGe4aw6dnpK8P3_fVo9Xl89XN7Wd_c3vy8v7mrTSpFrOzphxw11vekGKcXYUm2lkMyJHowzerDSjM6IfnTc9kMHxgIIboHJ8uXa0-rHQXfB-LJCymobVyzjJ8U5ld1ABael69ehy2BMCcGpBf2scacYVfsI1FZ9jEDtI1CUqxJBwa8POJRJXj2gSsZDMGA9loUoG_3nhN4B2Aqe_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209580720</pqid></control><display><type>article</type><title>A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame</title><source>ScienceDirect Journals</source><creator>Zhang, B.W. ; Lei, Y. ; Bai, B.F. ; Xu, A. ; Zhao, T.S.</creator><creatorcontrib>Zhang, B.W. ; Lei, Y. ; Bai, B.F. ; Xu, A. ; Zhao, T.S.</creatorcontrib><description>•A two-dimensional mathematical model for the VRFB stack is reported.•Electrolyte distribution is described via flow network equivalence method.•Reversible and irreversible heat sources in stack are determined.•Nonuniform electrolyte distribution dramatically influences discharge capacity. Lumped models have been widely adopted to predict the performance of the vanadium redox flow battery (VFRB) stack, which mainly due to its simplicity in modeling transient behaviors during operation cycles. However, average transport and electrochemical properties in previous lumped models make it impossible to obtain the information of electrolyte distributions in stacks. To address this issue, in this work, we report a two-dimensional mathematical model for a VRFB stack considering the effect of nonuniform electrolyte distributions in the flow frame via a flow network equivalence method. With this new model, battery performance and its temperature at different operating conditions are determined accurately. It is demonstrated that (i) temperature fluctuations of the stack reach up to 10 K at different current densities and flow rates; (ii) 25% blockage in the middle cell can lead to the capacity reduction by up to 80%.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.02.037</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Battery thermal management ; Electrochemical analysis ; Electrolytes ; Flow velocity ; Mathematical analysis ; Mathematical models ; Nonuniform electrolyte distribution ; Rechargeable batteries ; Stacks ; Temperature ; Two dimensional models ; Two-dimensional thermal model ; Vanadium ; Vanadium redox flow battery stack ; Variation</subject><ispartof>Applied thermal engineering, 2019-03, Vol.151, p.495-505</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3</citedby><cites>FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, B.W.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Bai, B.F.</creatorcontrib><creatorcontrib>Xu, A.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><title>A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame</title><title>Applied thermal engineering</title><description>•A two-dimensional mathematical model for the VRFB stack is reported.•Electrolyte distribution is described via flow network equivalence method.•Reversible and irreversible heat sources in stack are determined.•Nonuniform electrolyte distribution dramatically influences discharge capacity. Lumped models have been widely adopted to predict the performance of the vanadium redox flow battery (VFRB) stack, which mainly due to its simplicity in modeling transient behaviors during operation cycles. However, average transport and electrochemical properties in previous lumped models make it impossible to obtain the information of electrolyte distributions in stacks. To address this issue, in this work, we report a two-dimensional mathematical model for a VRFB stack considering the effect of nonuniform electrolyte distributions in the flow frame via a flow network equivalence method. With this new model, battery performance and its temperature at different operating conditions are determined accurately. It is demonstrated that (i) temperature fluctuations of the stack reach up to 10 K at different current densities and flow rates; (ii) 25% blockage in the middle cell can lead to the capacity reduction by up to 80%.</description><subject>Batteries</subject><subject>Battery thermal management</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Flow velocity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonuniform electrolyte distribution</subject><subject>Rechargeable batteries</subject><subject>Stacks</subject><subject>Temperature</subject><subject>Two dimensional models</subject><subject>Two-dimensional thermal model</subject><subject>Vanadium</subject><subject>Vanadium redox flow battery stack</subject><subject>Variation</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u3SAQha0qkZomfQekdmsH8LUxUjdRlJ9KkbJJ1gjDkHBrgzPgpPcp-srh6naTXTbAoPnO0cypqp-MNoyy_nzb6GWZ8jPgrCcITw2nTDaUN7QVX6oTNoi27nraH5V328l60zL2tfqW0pZSxgexOan-XZD8FmvrZwjJx6AnMuuiWA5v9kW0MBEXkbzqoK1fZ4Jg41_ipvhGRp0z4I6krM2fRHwwEZeIhQ1PJMSwBl_QmcAEJmOcdhmI9SmjH9dc3ApBitlBzKGe4aw6dnpK8P3_fVo9Xl89XN7Wd_c3vy8v7mrTSpFrOzphxw11vekGKcXYUm2lkMyJHowzerDSjM6IfnTc9kMHxgIIboHJ8uXa0-rHQXfB-LJCymobVyzjJ8U5ld1ABael69ehy2BMCcGpBf2scacYVfsI1FZ9jEDtI1CUqxJBwa8POJRJXj2gSsZDMGA9loUoG_3nhN4B2Aqe_Q</recordid><startdate>20190325</startdate><enddate>20190325</enddate><creator>Zhang, B.W.</creator><creator>Lei, Y.</creator><creator>Bai, B.F.</creator><creator>Xu, A.</creator><creator>Zhao, T.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190325</creationdate><title>A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame</title><author>Zhang, B.W. ; Lei, Y. ; Bai, B.F. ; Xu, A. ; Zhao, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Battery thermal management</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Flow velocity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonuniform electrolyte distribution</topic><topic>Rechargeable batteries</topic><topic>Stacks</topic><topic>Temperature</topic><topic>Two dimensional models</topic><topic>Two-dimensional thermal model</topic><topic>Vanadium</topic><topic>Vanadium redox flow battery stack</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, B.W.</creatorcontrib><creatorcontrib>Lei, Y.</creatorcontrib><creatorcontrib>Bai, B.F.</creatorcontrib><creatorcontrib>Xu, A.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, B.W.</au><au>Lei, Y.</au><au>Bai, B.F.</au><au>Xu, A.</au><au>Zhao, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-03-25</date><risdate>2019</risdate><volume>151</volume><spage>495</spage><epage>505</epage><pages>495-505</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•A two-dimensional mathematical model for the VRFB stack is reported.•Electrolyte distribution is described via flow network equivalence method.•Reversible and irreversible heat sources in stack are determined.•Nonuniform electrolyte distribution dramatically influences discharge capacity. Lumped models have been widely adopted to predict the performance of the vanadium redox flow battery (VFRB) stack, which mainly due to its simplicity in modeling transient behaviors during operation cycles. However, average transport and electrochemical properties in previous lumped models make it impossible to obtain the information of electrolyte distributions in stacks. To address this issue, in this work, we report a two-dimensional mathematical model for a VRFB stack considering the effect of nonuniform electrolyte distributions in the flow frame via a flow network equivalence method. With this new model, battery performance and its temperature at different operating conditions are determined accurately. It is demonstrated that (i) temperature fluctuations of the stack reach up to 10 K at different current densities and flow rates; (ii) 25% blockage in the middle cell can lead to the capacity reduction by up to 80%.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.02.037</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-03, Vol.151, p.495-505
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2209580720
source ScienceDirect Journals
subjects Batteries
Battery thermal management
Electrochemical analysis
Electrolytes
Flow velocity
Mathematical analysis
Mathematical models
Nonuniform electrolyte distribution
Rechargeable batteries
Stacks
Temperature
Two dimensional models
Two-dimensional thermal model
Vanadium
Vanadium redox flow battery stack
Variation
title A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-dimensional%20mathematical%20model%20for%20vanadium%20redox%20flow%20battery%20stacks%20incorporating%20nonuniform%20electrolyte%20distribution%20in%20the%20flow%20frame&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20B.W.&rft.date=2019-03-25&rft.volume=151&rft.spage=495&rft.epage=505&rft.pages=495-505&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.02.037&rft_dat=%3Cproquest_cross%3E2209580720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-dbf7db40f6c58997b30ad9791f76ecfca8d9cbfc76bf2d685ecdee72de196bff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209580720&rft_id=info:pmid/&rfr_iscdi=true