Loading…

THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS

Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an R...

Full description

Saved in:
Bibliographic Details
Published in:Journal of policy analysis and management 2018-04, Vol.37 (2), p.403-429
Main Authors: Chaplin, Duncan D., Cook, Thomas D., Zurovac, Jelena, Coopersmith, Jared S., Finucane, Mariel M., Vollmer, Lauren N., Morris, Rebecca E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203
cites cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203
container_end_page 429
container_issue 2
container_start_page 403
container_title Journal of policy analysis and management
container_volume 37
creator Chaplin, Duncan D.
Cook, Thomas D.
Zurovac, Jelena
Coopersmith, Jared S.
Finucane, Mariel M.
Vollmer, Lauren N.
Morris, Rebecca E.
description Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.
doi_str_mv 10.1002/pam.22051
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2209691553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45105257</jstor_id><sourcerecordid>45105257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</originalsourceid><addsrcrecordid>eNp1kE1PgzAYgBujiXN68AeYNPHkga0fFKi3BtjWhJWFMnUnAgySLZtMmDH794JMb56aps_zvukDwD1GI4wQGR_S_YgQxPAFGGBGkGFZjnMJBojYluHYlF-Dm6bZIoQY4ngATvHMh1LFfqREAIXyoP92vryIQHoyXsFwAjsq8qeRr7UMFfSkdkMVS7Xs3j1fy6l6hgLO_VgYopVXWurOwwy-yngmlaHjpbeCbjhfiEjqUOlbcFWmu6a4O59DsJz4sTszgnAqXREYOWUEGxxxM7NL7mQ5KzNGUUEzxhy6xtS015y3_0pz22G8zMqysNY0c6hpFo6ZEZO0AegQPPZzD3X18Vk0x2Rbfdbv7cqkDcUtjhmjLfXUU3ldNU1dlMmh3uzT-pRglHRlk7Zs8lO2Zcc9-7XZFaf_wWQh5r_GQ29sm2NV_xkmw4gRZtNvN-J4YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209691553</pqid></control><display><type>article</type><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PAIS Index</source><creator>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E.</creator><contributor>Barnow, Burt S.</contributor><creatorcontrib>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E. ; Barnow, Burt S.</creatorcontrib><description>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</description><identifier>ISSN: 0276-8739</identifier><identifier>EISSN: 1520-6688</identifier><identifier>DOI: 10.1002/pam.22051</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals, Inc</publisher><subject>Analysis ; Averages ; Bayesian analysis ; Bias ; Clinical trials ; Discontinuity ; Inference ; Internal validity ; Meta-analysis ; Methods for Policy Analysis ; Regression (Statistics) ; Standard deviation ; Validity</subject><ispartof>Journal of policy analysis and management, 2018-04, Vol.37 (2), p.403-429</ispartof><rights>Copyright © 2018 Association for Public Policy Analysis and Management</rights><rights>2018 by the Association for Public Policy Analysis and Management</rights><rights>Copyright © 2018 by the Association for Public Policy Analysis and Management</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</citedby><cites>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45105257$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45105257$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27866,27924,27925,33223,58238,58471</link.rule.ids></links><search><contributor>Barnow, Burt S.</contributor><creatorcontrib>Chaplin, Duncan D.</creatorcontrib><creatorcontrib>Cook, Thomas D.</creatorcontrib><creatorcontrib>Zurovac, Jelena</creatorcontrib><creatorcontrib>Coopersmith, Jared S.</creatorcontrib><creatorcontrib>Finucane, Mariel M.</creatorcontrib><creatorcontrib>Vollmer, Lauren N.</creatorcontrib><creatorcontrib>Morris, Rebecca E.</creatorcontrib><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><title>Journal of policy analysis and management</title><description>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</description><subject>Analysis</subject><subject>Averages</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Clinical trials</subject><subject>Discontinuity</subject><subject>Inference</subject><subject>Internal validity</subject><subject>Meta-analysis</subject><subject>Methods for Policy Analysis</subject><subject>Regression (Statistics)</subject><subject>Standard deviation</subject><subject>Validity</subject><issn>0276-8739</issn><issn>1520-6688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp1kE1PgzAYgBujiXN68AeYNPHkga0fFKi3BtjWhJWFMnUnAgySLZtMmDH794JMb56aps_zvukDwD1GI4wQGR_S_YgQxPAFGGBGkGFZjnMJBojYluHYlF-Dm6bZIoQY4ngATvHMh1LFfqREAIXyoP92vryIQHoyXsFwAjsq8qeRr7UMFfSkdkMVS7Xs3j1fy6l6hgLO_VgYopVXWurOwwy-yngmlaHjpbeCbjhfiEjqUOlbcFWmu6a4O59DsJz4sTszgnAqXREYOWUEGxxxM7NL7mQ5KzNGUUEzxhy6xtS015y3_0pz22G8zMqysNY0c6hpFo6ZEZO0AegQPPZzD3X18Vk0x2Rbfdbv7cqkDcUtjhmjLfXUU3ldNU1dlMmh3uzT-pRglHRlk7Zs8lO2Zcc9-7XZFaf_wWQh5r_GQ29sm2NV_xkmw4gRZtNvN-J4YQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chaplin, Duncan D.</creator><creator>Cook, Thomas D.</creator><creator>Zurovac, Jelena</creator><creator>Coopersmith, Jared S.</creator><creator>Finucane, Mariel M.</creator><creator>Vollmer, Lauren N.</creator><creator>Morris, Rebecca E.</creator><general>Wiley Periodicals, Inc</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20180401</creationdate><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><author>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Averages</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Clinical trials</topic><topic>Discontinuity</topic><topic>Inference</topic><topic>Internal validity</topic><topic>Meta-analysis</topic><topic>Methods for Policy Analysis</topic><topic>Regression (Statistics)</topic><topic>Standard deviation</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaplin, Duncan D.</creatorcontrib><creatorcontrib>Cook, Thomas D.</creatorcontrib><creatorcontrib>Zurovac, Jelena</creatorcontrib><creatorcontrib>Coopersmith, Jared S.</creatorcontrib><creatorcontrib>Finucane, Mariel M.</creatorcontrib><creatorcontrib>Vollmer, Lauren N.</creatorcontrib><creatorcontrib>Morris, Rebecca E.</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of policy analysis and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaplin, Duncan D.</au><au>Cook, Thomas D.</au><au>Zurovac, Jelena</au><au>Coopersmith, Jared S.</au><au>Finucane, Mariel M.</au><au>Vollmer, Lauren N.</au><au>Morris, Rebecca E.</au><au>Barnow, Burt S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</atitle><jtitle>Journal of policy analysis and management</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>403</spage><epage>429</epage><pages>403-429</pages><issn>0276-8739</issn><eissn>1520-6688</eissn><abstract>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/pam.22051</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0276-8739
ispartof Journal of policy analysis and management, 2018-04, Vol.37 (2), p.403-429
issn 0276-8739
1520-6688
language eng
recordid cdi_proquest_journals_2209691553
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley; JSTOR Archival Journals and Primary Sources Collection; PAIS Index
subjects Analysis
Averages
Bayesian analysis
Bias
Clinical trials
Discontinuity
Inference
Internal validity
Meta-analysis
Methods for Policy Analysis
Regression (Statistics)
Standard deviation
Validity
title THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20INTERNAL%20AND%20EXTERNAL%20VALIDITY%20OF%20THE%20REGRESSION%20DISCONTINUITY%20DESIGN:%20A%20META-ANALYSIS%20OF%2015%20WITHIN-STUDY%20COMPARISONS&rft.jtitle=Journal%20of%20policy%20analysis%20and%20management&rft.au=Chaplin,%20Duncan%20D.&rft.date=2018-04-01&rft.volume=37&rft.issue=2&rft.spage=403&rft.epage=429&rft.pages=403-429&rft.issn=0276-8739&rft.eissn=1520-6688&rft_id=info:doi/10.1002/pam.22051&rft_dat=%3Cjstor_proqu%3E45105257%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209691553&rft_id=info:pmid/&rft_jstor_id=45105257&rfr_iscdi=true