Loading…
THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS
Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an R...
Saved in:
Published in: | Journal of policy analysis and management 2018-04, Vol.37 (2), p.403-429 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203 |
---|---|
cites | cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203 |
container_end_page | 429 |
container_issue | 2 |
container_start_page | 403 |
container_title | Journal of policy analysis and management |
container_volume | 37 |
creator | Chaplin, Duncan D. Cook, Thomas D. Zurovac, Jelena Coopersmith, Jared S. Finucane, Mariel M. Vollmer, Lauren N. Morris, Rebecca E. |
description | Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used. |
doi_str_mv | 10.1002/pam.22051 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2209691553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45105257</jstor_id><sourcerecordid>45105257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</originalsourceid><addsrcrecordid>eNp1kE1PgzAYgBujiXN68AeYNPHkga0fFKi3BtjWhJWFMnUnAgySLZtMmDH794JMb56aps_zvukDwD1GI4wQGR_S_YgQxPAFGGBGkGFZjnMJBojYluHYlF-Dm6bZIoQY4ngATvHMh1LFfqREAIXyoP92vryIQHoyXsFwAjsq8qeRr7UMFfSkdkMVS7Xs3j1fy6l6hgLO_VgYopVXWurOwwy-yngmlaHjpbeCbjhfiEjqUOlbcFWmu6a4O59DsJz4sTszgnAqXREYOWUEGxxxM7NL7mQ5KzNGUUEzxhy6xtS015y3_0pz22G8zMqysNY0c6hpFo6ZEZO0AegQPPZzD3X18Vk0x2Rbfdbv7cqkDcUtjhmjLfXUU3ldNU1dlMmh3uzT-pRglHRlk7Zs8lO2Zcc9-7XZFaf_wWQh5r_GQ29sm2NV_xkmw4gRZtNvN-J4YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209691553</pqid></control><display><type>article</type><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PAIS Index</source><creator>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E.</creator><contributor>Barnow, Burt S.</contributor><creatorcontrib>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E. ; Barnow, Burt S.</creatorcontrib><description>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</description><identifier>ISSN: 0276-8739</identifier><identifier>EISSN: 1520-6688</identifier><identifier>DOI: 10.1002/pam.22051</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals, Inc</publisher><subject>Analysis ; Averages ; Bayesian analysis ; Bias ; Clinical trials ; Discontinuity ; Inference ; Internal validity ; Meta-analysis ; Methods for Policy Analysis ; Regression (Statistics) ; Standard deviation ; Validity</subject><ispartof>Journal of policy analysis and management, 2018-04, Vol.37 (2), p.403-429</ispartof><rights>Copyright © 2018 Association for Public Policy Analysis and Management</rights><rights>2018 by the Association for Public Policy Analysis and Management</rights><rights>Copyright © 2018 by the Association for Public Policy Analysis and Management</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</citedby><cites>FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45105257$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45105257$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27866,27924,27925,33223,58238,58471</link.rule.ids></links><search><contributor>Barnow, Burt S.</contributor><creatorcontrib>Chaplin, Duncan D.</creatorcontrib><creatorcontrib>Cook, Thomas D.</creatorcontrib><creatorcontrib>Zurovac, Jelena</creatorcontrib><creatorcontrib>Coopersmith, Jared S.</creatorcontrib><creatorcontrib>Finucane, Mariel M.</creatorcontrib><creatorcontrib>Vollmer, Lauren N.</creatorcontrib><creatorcontrib>Morris, Rebecca E.</creatorcontrib><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><title>Journal of policy analysis and management</title><description>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</description><subject>Analysis</subject><subject>Averages</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Clinical trials</subject><subject>Discontinuity</subject><subject>Inference</subject><subject>Internal validity</subject><subject>Meta-analysis</subject><subject>Methods for Policy Analysis</subject><subject>Regression (Statistics)</subject><subject>Standard deviation</subject><subject>Validity</subject><issn>0276-8739</issn><issn>1520-6688</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp1kE1PgzAYgBujiXN68AeYNPHkga0fFKi3BtjWhJWFMnUnAgySLZtMmDH794JMb56aps_zvukDwD1GI4wQGR_S_YgQxPAFGGBGkGFZjnMJBojYluHYlF-Dm6bZIoQY4ngATvHMh1LFfqREAIXyoP92vryIQHoyXsFwAjsq8qeRr7UMFfSkdkMVS7Xs3j1fy6l6hgLO_VgYopVXWurOwwy-yngmlaHjpbeCbjhfiEjqUOlbcFWmu6a4O59DsJz4sTszgnAqXREYOWUEGxxxM7NL7mQ5KzNGUUEzxhy6xtS015y3_0pz22G8zMqysNY0c6hpFo6ZEZO0AegQPPZzD3X18Vk0x2Rbfdbv7cqkDcUtjhmjLfXUU3ldNU1dlMmh3uzT-pRglHRlk7Zs8lO2Zcc9-7XZFaf_wWQh5r_GQ29sm2NV_xkmw4gRZtNvN-J4YQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chaplin, Duncan D.</creator><creator>Cook, Thomas D.</creator><creator>Zurovac, Jelena</creator><creator>Coopersmith, Jared S.</creator><creator>Finucane, Mariel M.</creator><creator>Vollmer, Lauren N.</creator><creator>Morris, Rebecca E.</creator><general>Wiley Periodicals, Inc</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>8BJ</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20180401</creationdate><title>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</title><author>Chaplin, Duncan D. ; Cook, Thomas D. ; Zurovac, Jelena ; Coopersmith, Jared S. ; Finucane, Mariel M. ; Vollmer, Lauren N. ; Morris, Rebecca E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Averages</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Clinical trials</topic><topic>Discontinuity</topic><topic>Inference</topic><topic>Internal validity</topic><topic>Meta-analysis</topic><topic>Methods for Policy Analysis</topic><topic>Regression (Statistics)</topic><topic>Standard deviation</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaplin, Duncan D.</creatorcontrib><creatorcontrib>Cook, Thomas D.</creatorcontrib><creatorcontrib>Zurovac, Jelena</creatorcontrib><creatorcontrib>Coopersmith, Jared S.</creatorcontrib><creatorcontrib>Finucane, Mariel M.</creatorcontrib><creatorcontrib>Vollmer, Lauren N.</creatorcontrib><creatorcontrib>Morris, Rebecca E.</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of policy analysis and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaplin, Duncan D.</au><au>Cook, Thomas D.</au><au>Zurovac, Jelena</au><au>Coopersmith, Jared S.</au><au>Finucane, Mariel M.</au><au>Vollmer, Lauren N.</au><au>Morris, Rebecca E.</au><au>Barnow, Burt S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS</atitle><jtitle>Journal of policy analysis and management</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>37</volume><issue>2</issue><spage>403</spage><epage>429</epage><pages>403-429</pages><issn>0276-8739</issn><eissn>1520-6688</eissn><abstract>Theory predicts that regression discontinuity (RD) provides valid causal inference at the cutoff score that determines treatment assignment. One purpose of this paper is to test RD's internal validity across 15 studies. Each of them assesses the correspondence between causal estimates from an RD study and a randomized control trial (RCT) when the estimates are made at the same cutoff point where they should not differ asymptotically. However, statistical error, imperfect design implementation, and a plethora of different possible analysis options, mean that they might nonetheless differ. We test whether they do, assuming that the bias potential is greater with RDs than RCTs. A second purpose of this paper is to investigate the external validity of RD by exploring how the size of the bias estimates varies across the 15 studies, for they differ in their settings, interventions, analyses, and implementation details. Both Bayesian and frequentist meta-analysis methods show that the RD bias is below 0.01 standard deviations on average, indicating RD's high internal validity. When the study-specific estimates are shrunken to capitalize on the information the other studies provide, all the RD causal estimates fall within 0.07 standard deviations of their RCT counterparts, now indicating high external validity. With unshrunken estimates, the mean RD bias is still essentially zero, but the distribution of RD bias estimates is less tight, especially with smaller samples and when parametric RD analyses are used.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/pam.22051</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0276-8739 |
ispartof | Journal of policy analysis and management, 2018-04, Vol.37 (2), p.403-429 |
issn | 0276-8739 1520-6688 |
language | eng |
recordid | cdi_proquest_journals_2209691553 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley; JSTOR Archival Journals and Primary Sources Collection; PAIS Index |
subjects | Analysis Averages Bayesian analysis Bias Clinical trials Discontinuity Inference Internal validity Meta-analysis Methods for Policy Analysis Regression (Statistics) Standard deviation Validity |
title | THE INTERNAL AND EXTERNAL VALIDITY OF THE REGRESSION DISCONTINUITY DESIGN: A META-ANALYSIS OF 15 WITHIN-STUDY COMPARISONS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20INTERNAL%20AND%20EXTERNAL%20VALIDITY%20OF%20THE%20REGRESSION%20DISCONTINUITY%20DESIGN:%20A%20META-ANALYSIS%20OF%2015%20WITHIN-STUDY%20COMPARISONS&rft.jtitle=Journal%20of%20policy%20analysis%20and%20management&rft.au=Chaplin,%20Duncan%20D.&rft.date=2018-04-01&rft.volume=37&rft.issue=2&rft.spage=403&rft.epage=429&rft.pages=403-429&rft.issn=0276-8739&rft.eissn=1520-6688&rft_id=info:doi/10.1002/pam.22051&rft_dat=%3Cjstor_proqu%3E45105257%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3521-9094b7f98bc5fb530e3b5583d1347d99276ac7859fbffe6d3b8344e84b2425203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209691553&rft_id=info:pmid/&rft_jstor_id=45105257&rfr_iscdi=true |