Loading…
Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable
DP-coloring (also known as correspondence coloring) of a simple graph is a generalization of list coloring. It is known that planar graphs without 4-cycles adjacent to triangles are 4-choosable, and planar graphs without 4-cycles are DP-4-colorable. In this paper, we show that planar graphs without...
Saved in:
Published in: | Graphs and combinatorics 2019-05, Vol.35 (3), p.707-718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763 |
container_end_page | 718 |
container_issue | 3 |
container_start_page | 707 |
container_title | Graphs and combinatorics |
container_volume | 35 |
creator | Kim, Seog-Jin Yu, Xiaowei |
description | DP-coloring (also known as correspondence coloring) of a simple graph is a generalization of list coloring. It is known that planar graphs without 4-cycles adjacent to triangles are 4-choosable, and planar graphs without 4-cycles are DP-4-colorable. In this paper, we show that planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, which implies the two results above. |
doi_str_mv | 10.1007/s00373-019-02028-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2210051471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210051471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThV4hywk7RpjtOAgTSJHYY4Rkma7o9KO5LusH16MorEjZNl-_ee5UfILcI9AsiHCMAlp4CKAgNW0uMZGaHgOc0VinMyAoWY1qguyVWMWwDIUcCIzBaNaU3IZsHs1jH72PTrbt9ngk4PrvExm1Rb43zbZ32XLcPGtKvT1ASfPS5oorqmC8Y2_ppc1KaJ_ua3jsn789Ny-kLnb7PX6WROHUfVUy6L2jvOrLKKFamRZSUs97kta46F8NKVwgiXGIHGg4XC1gqsqCqsKlnwMbkbfHeh-9r72Otttw9tOqkZw5-vJCaKDZQLXYzB13oXNp8mHDSCPgWmh8B0Ckz_BKaPScQHUUxwu_Lhz_of1TdDym0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210051471</pqid></control><display><type>article</type><title>Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable</title><source>Springer Nature</source><creator>Kim, Seog-Jin ; Yu, Xiaowei</creator><creatorcontrib>Kim, Seog-Jin ; Yu, Xiaowei</creatorcontrib><description>DP-coloring (also known as correspondence coloring) of a simple graph is a generalization of list coloring. It is known that planar graphs without 4-cycles adjacent to triangles are 4-choosable, and planar graphs without 4-cycles are DP-4-colorable. In this paper, we show that planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, which implies the two results above.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-019-02028-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Coloring ; Combinatorics ; Engineering Design ; Graphs ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2019-05, Vol.35 (3), p.707-718</ispartof><rights>Springer Japan KK, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763</citedby><cites>FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kim, Seog-Jin</creatorcontrib><creatorcontrib>Yu, Xiaowei</creatorcontrib><title>Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>DP-coloring (also known as correspondence coloring) of a simple graph is a generalization of list coloring. It is known that planar graphs without 4-cycles adjacent to triangles are 4-choosable, and planar graphs without 4-cycles are DP-4-colorable. In this paper, we show that planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, which implies the two results above.</description><subject>Coloring</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThV4hywk7RpjtOAgTSJHYY4Rkma7o9KO5LusH16MorEjZNl-_ee5UfILcI9AsiHCMAlp4CKAgNW0uMZGaHgOc0VinMyAoWY1qguyVWMWwDIUcCIzBaNaU3IZsHs1jH72PTrbt9ngk4PrvExm1Rb43zbZ32XLcPGtKvT1ASfPS5oorqmC8Y2_ppc1KaJ_ua3jsn789Ny-kLnb7PX6WROHUfVUy6L2jvOrLKKFamRZSUs97kta46F8NKVwgiXGIHGg4XC1gqsqCqsKlnwMbkbfHeh-9r72Otttw9tOqkZw5-vJCaKDZQLXYzB13oXNp8mHDSCPgWmh8B0Ckz_BKaPScQHUUxwu_Lhz_of1TdDym0o</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kim, Seog-Jin</creator><creator>Yu, Xiaowei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable</title><author>Kim, Seog-Jin ; Yu, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coloring</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seog-Jin</creatorcontrib><creatorcontrib>Yu, Xiaowei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seog-Jin</au><au>Yu, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>707</spage><epage>718</epage><pages>707-718</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>DP-coloring (also known as correspondence coloring) of a simple graph is a generalization of list coloring. It is known that planar graphs without 4-cycles adjacent to triangles are 4-choosable, and planar graphs without 4-cycles are DP-4-colorable. In this paper, we show that planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, which implies the two results above.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-019-02028-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2019-05, Vol.35 (3), p.707-718 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2210051471 |
source | Springer Nature |
subjects | Coloring Combinatorics Engineering Design Graphs Mathematics Mathematics and Statistics Original Paper |
title | Planar Graphs Without 4-Cycles Adjacent to Triangles are DP-4-Colorable |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20Graphs%20Without%204-Cycles%20Adjacent%20to%20Triangles%20are%20DP-4-Colorable&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Kim,%20Seog-Jin&rft.date=2019-05-01&rft.volume=35&rft.issue=3&rft.spage=707&rft.epage=718&rft.pages=707-718&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-019-02028-z&rft_dat=%3Cproquest_cross%3E2210051471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-376fec32b9b92676f78d4b3e5b8f3164e7c84a4cec341ae0b06bf90b4dd1dd763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210051471&rft_id=info:pmid/&rfr_iscdi=true |