Loading…

On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)

We prove that certain crystabelline deformation rings of two dimensional residual representations of Gal ( Q ¯ p / Q p ) are Cohen–Macaulay. As a consequence, this allows to improve Kisin’s R [ 1 / p ] = T [ 1 / p ] theorem to an R = T theorem.

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2019-02, Vol.373 (1-2), p.421-487
Main Authors: Hu, Yongquan, Paškūnas, Vytautas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p1412-38bc7ef8ed5dec6b4caebd0e65e951d6f3c4168f1090416f1f701403406847783
container_end_page 487
container_issue 1-2
container_start_page 421
container_title Mathematische annalen
container_volume 373
creator Hu, Yongquan
Paškūnas, Vytautas
description We prove that certain crystabelline deformation rings of two dimensional residual representations of Gal ( Q ¯ p / Q p ) are Cohen–Macaulay. As a consequence, this allows to improve Kisin’s R [ 1 / p ] = T [ 1 / p ] theorem to an R = T theorem.
doi_str_mv 10.1007/s00208-018-1671-2
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2210052516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210052516</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1412-38bc7ef8ed5dec6b4caebd0e65e951d6f3c4168f1090416f1f701403406847783</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsP4C3gpT3EziSb3fQoRasilKI9h-xuYreuybrZon0q38Enc0sFTzMwH_Pzf4RcIlwjQDaJABwUA1QM0wwZPyIDTARnqCA7JoP-LJlUAk_JWYwbABAAckBWC0-Ldhc7k9u6rrylpXWhfTddFTxtK_8aaXB0burR8ue7mSybMR19Vt2aGk9N01hfVl8039FHU7zR53XouuDH5-TEmTrai785JKu725fZPXtazB9mN0-swQQ5EyovMuuULWVpizRPCmPzEmwq7VRimTpRJJgqhzCFfnHoMsAERAKpSrJMiSG5Ovxt2vCxtbHTm7BtfR-pOe-9SC4x7Sl-oGKzL2TbfwpB7_Xpgz7d69N7fZqLXxJqYZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210052516</pqid></control><display><type>article</type><title>On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Hu, Yongquan ; Paškūnas, Vytautas</creator><creatorcontrib>Hu, Yongquan ; Paškūnas, Vytautas</creatorcontrib><description>We prove that certain crystabelline deformation rings of two dimensional residual representations of Gal ( Q ¯ p / Q p ) are Cohen–Macaulay. As a consequence, this allows to improve Kisin’s R [ 1 / p ] = T [ 1 / p ] theorem to an R = T theorem.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-018-1671-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Deformation ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2019-02, Vol.373 (1-2), p.421-487</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1412-38bc7ef8ed5dec6b4caebd0e65e951d6f3c4168f1090416f1f701403406847783</cites><orcidid>0000-0002-0400-1989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Yongquan</creatorcontrib><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><title>On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>We prove that certain crystabelline deformation rings of two dimensional residual representations of Gal ( Q ¯ p / Q p ) are Cohen–Macaulay. As a consequence, this allows to improve Kisin’s R [ 1 / p ] = T [ 1 / p ] theorem to an R = T theorem.</description><subject>Deformation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKAzEQhoMoWKsP4C3gpT3EziSb3fQoRasilKI9h-xuYreuybrZon0q38Enc0sFTzMwH_Pzf4RcIlwjQDaJABwUA1QM0wwZPyIDTARnqCA7JoP-LJlUAk_JWYwbABAAckBWC0-Ldhc7k9u6rrylpXWhfTddFTxtK_8aaXB0burR8ue7mSybMR19Vt2aGk9N01hfVl8039FHU7zR53XouuDH5-TEmTrai785JKu725fZPXtazB9mN0-swQQ5EyovMuuULWVpizRPCmPzEmwq7VRimTpRJJgqhzCFfnHoMsAERAKpSrJMiSG5Ovxt2vCxtbHTm7BtfR-pOe-9SC4x7Sl-oGKzL2TbfwpB7_Xpgz7d69N7fZqLXxJqYZ0</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Hu, Yongquan</creator><creator>Paškūnas, Vytautas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0400-1989</orcidid></search><sort><creationdate>20190208</creationdate><title>On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)</title><author>Hu, Yongquan ; Paškūnas, Vytautas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1412-38bc7ef8ed5dec6b4caebd0e65e951d6f3c4168f1090416f1f701403406847783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deformation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yongquan</creatorcontrib><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yongquan</au><au>Paškūnas, Vytautas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-02-08</date><risdate>2019</risdate><volume>373</volume><issue>1-2</issue><spage>421</spage><epage>487</epage><pages>421-487</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>We prove that certain crystabelline deformation rings of two dimensional residual representations of Gal ( Q ¯ p / Q p ) are Cohen–Macaulay. As a consequence, this allows to improve Kisin’s R [ 1 / p ] = T [ 1 / p ] theorem to an R = T theorem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-018-1671-2</doi><tpages>67</tpages><orcidid>https://orcid.org/0000-0002-0400-1989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2019-02, Vol.373 (1-2), p.421-487
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2210052516
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Deformation
Mathematics
Mathematics and Statistics
Theorems
title On crystabelline deformation rings of Gal(Q¯p/Qp) (with an appendix by Jack Shotton)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20crystabelline%20deformation%20rings%20of%20Gal(Q%C2%AFp/Qp)%20(with%20an%20appendix%20by%20Jack%20Shotton)&rft.jtitle=Mathematische%20annalen&rft.au=Hu,%20Yongquan&rft.date=2019-02-08&rft.volume=373&rft.issue=1-2&rft.spage=421&rft.epage=487&rft.pages=421-487&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-018-1671-2&rft_dat=%3Cproquest_sprin%3E2210052516%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1412-38bc7ef8ed5dec6b4caebd0e65e951d6f3c4168f1090416f1f701403406847783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2210052516&rft_id=info:pmid/&rfr_iscdi=true