Loading…

Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments

The geomechanical stability of the permafrost formations containing gas hydrates in the Arctic is extremely vulnerable to global warming and the drilling of wells for oil and gas exploration purposes. In this work the effect of gas hydrate and ice on the geomechanical properties of sediments was com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth 2019-03, Vol.124 (3), p.2551-2563
Main Authors: Yang, J., Hassanpouryouzband, A., Tohidi, B., Chuvilin, E., Bukhanov, B., Istomin, V., Cheremisin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63
cites cdi_FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63
container_end_page 2563
container_issue 3
container_start_page 2551
container_title Journal of geophysical research. Solid earth
container_volume 124
creator Yang, J.
Hassanpouryouzband, A.
Tohidi, B.
Chuvilin, E.
Bukhanov, B.
Istomin, V.
Cheremisin, A.
description The geomechanical stability of the permafrost formations containing gas hydrates in the Arctic is extremely vulnerable to global warming and the drilling of wells for oil and gas exploration purposes. In this work the effect of gas hydrate and ice on the geomechanical properties of sediments was compared by triaxial compression tests for typical sediment conditions: unfrozen hydrate‐free sediments at 0.3 °C, hydrate‐free sediments frozen at −10 °C, unfrozen sediments containing about 22 vol% methane hydrate at 0.3 °C, and hydrate‐bearing sediments frozen at −10 °C. The effect of hydrate saturation on the geomechanical properties of simulated permafrost sediments was also investigated at predefined temperatures and confining pressures. Results show that ice and gas hydrates distinctively influence the shearing characteristics and deformation behavior. The presence of around 22 vol% methane hydrate in the unfrozen sediments led to a shear strength as strong as those of the frozen hydrate‐free specimens with 85 vol% of ice in the pores. The frozen hydrate‐free sediments experienced brittle‐like failure, while the hydrate‐bearing sediments showed large dilatation without rapid failure. Hydrate formation in the sediments resulted in a measurable reduction in the internal friction, while freezing did not. In contrast to ice, gas hydrate plays a dominant role in reinforcement of the simulated permafrost sediments. Finally, a new physical model was developed, based on formation of hydrate networks or frame structures to interpret the observed strengthening in the shear strength and the ductile deformation. Key Points Geomechanical properties of unfrozen and frozen, hydrate‐free, and hydrate‐bearing sediments were experimentally determined Ice and hydrate distinctively affected the shearing characteristics and deformation behavior of sediments A physical model of microhydrate networks or frame structures was presumed to interpret the distinctive characteristics
doi_str_mv 10.1029/2018JB016536
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2211005781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211005781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63</originalsourceid><addsrcrecordid>eNp9kUtOAzEMhkcIJBB0xwEisWUgTubJjkJpQZVAFNajNHFo0DxKkoK64wisOR4nIVUBwQZvbFnf79-Wo2gf6BFQVh4zCsVVn0KW8mwj2mGQlXHJ02zzpwa-HfWce6QhitCCZCd6HwpHRktlhUdHTEtu0DZC2875E3JunDet9OYZyUBrlJ50mvxRiFaRS4mka4mfIRli16CcidZIUZMb283RehO4oJuYZlEHkfpWf7y-9VFY0z78ciUTVKbB1ru9aEuL2mHvK-9G9xeDu7NRPL4eXp6djmPBOU1iJdKwGTLFtRIAqHLQCFrKdJoxwbJidWqSC87KPE9BqgQZ51gqYDBNMeO70cF67tx2Twt0vnrsFrYNlhVjAJSmeQGBOlxTMmzpLOpqbk0j7LICWq0eUP1-QMD5Gn8xNS7_Zaur4W0_5TxJ-CfC34mH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211005781</pqid></control><display><type>article</type><title>Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Yang, J. ; Hassanpouryouzband, A. ; Tohidi, B. ; Chuvilin, E. ; Bukhanov, B. ; Istomin, V. ; Cheremisin, A.</creator><creatorcontrib>Yang, J. ; Hassanpouryouzband, A. ; Tohidi, B. ; Chuvilin, E. ; Bukhanov, B. ; Istomin, V. ; Cheremisin, A.</creatorcontrib><description>The geomechanical stability of the permafrost formations containing gas hydrates in the Arctic is extremely vulnerable to global warming and the drilling of wells for oil and gas exploration purposes. In this work the effect of gas hydrate and ice on the geomechanical properties of sediments was compared by triaxial compression tests for typical sediment conditions: unfrozen hydrate‐free sediments at 0.3 °C, hydrate‐free sediments frozen at −10 °C, unfrozen sediments containing about 22 vol% methane hydrate at 0.3 °C, and hydrate‐bearing sediments frozen at −10 °C. The effect of hydrate saturation on the geomechanical properties of simulated permafrost sediments was also investigated at predefined temperatures and confining pressures. Results show that ice and gas hydrates distinctively influence the shearing characteristics and deformation behavior. The presence of around 22 vol% methane hydrate in the unfrozen sediments led to a shear strength as strong as those of the frozen hydrate‐free specimens with 85 vol% of ice in the pores. The frozen hydrate‐free sediments experienced brittle‐like failure, while the hydrate‐bearing sediments showed large dilatation without rapid failure. Hydrate formation in the sediments resulted in a measurable reduction in the internal friction, while freezing did not. In contrast to ice, gas hydrate plays a dominant role in reinforcement of the simulated permafrost sediments. Finally, a new physical model was developed, based on formation of hydrate networks or frame structures to interpret the observed strengthening in the shear strength and the ductile deformation. Key Points Geomechanical properties of unfrozen and frozen, hydrate‐free, and hydrate‐bearing sediments were experimentally determined Ice and hydrate distinctively affected the shearing characteristics and deformation behavior of sediments A physical model of microhydrate networks or frame structures was presumed to interpret the distinctive characteristics</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016536</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bearing ; Climate change ; Compression ; Computer simulation ; Confining ; Deformation ; Drilling ; Exploratory drilling ; Frame structures ; Freezing ; gas hydrate ; Gas hydrates ; geomechanical properties ; Geomechanics ; Geophysics ; Global warming ; Hydrates ; Ice ; Internal friction ; Methane ; Methane hydrates ; microhydrate networks ; Natural gas exploration ; Oil and gas exploration ; Oil exploration ; Permafrost ; Properties ; Properties (attributes) ; Saturation ; Sediment ; Sediments ; Shear strength ; Shearing ; Stability ; Stretching ; Triaxial compression tests ; triaxial shearing</subject><ispartof>Journal of geophysical research. Solid earth, 2019-03, Vol.124 (3), p.2551-2563</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63</citedby><cites>FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63</cites><orcidid>0000-0003-4183-336X ; 0000-0002-7058-7244 ; 0000-0002-3580-9120 ; 0000-0002-2827-4228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Hassanpouryouzband, A.</creatorcontrib><creatorcontrib>Tohidi, B.</creatorcontrib><creatorcontrib>Chuvilin, E.</creatorcontrib><creatorcontrib>Bukhanov, B.</creatorcontrib><creatorcontrib>Istomin, V.</creatorcontrib><creatorcontrib>Cheremisin, A.</creatorcontrib><title>Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments</title><title>Journal of geophysical research. Solid earth</title><description>The geomechanical stability of the permafrost formations containing gas hydrates in the Arctic is extremely vulnerable to global warming and the drilling of wells for oil and gas exploration purposes. In this work the effect of gas hydrate and ice on the geomechanical properties of sediments was compared by triaxial compression tests for typical sediment conditions: unfrozen hydrate‐free sediments at 0.3 °C, hydrate‐free sediments frozen at −10 °C, unfrozen sediments containing about 22 vol% methane hydrate at 0.3 °C, and hydrate‐bearing sediments frozen at −10 °C. The effect of hydrate saturation on the geomechanical properties of simulated permafrost sediments was also investigated at predefined temperatures and confining pressures. Results show that ice and gas hydrates distinctively influence the shearing characteristics and deformation behavior. The presence of around 22 vol% methane hydrate in the unfrozen sediments led to a shear strength as strong as those of the frozen hydrate‐free specimens with 85 vol% of ice in the pores. The frozen hydrate‐free sediments experienced brittle‐like failure, while the hydrate‐bearing sediments showed large dilatation without rapid failure. Hydrate formation in the sediments resulted in a measurable reduction in the internal friction, while freezing did not. In contrast to ice, gas hydrate plays a dominant role in reinforcement of the simulated permafrost sediments. Finally, a new physical model was developed, based on formation of hydrate networks or frame structures to interpret the observed strengthening in the shear strength and the ductile deformation. Key Points Geomechanical properties of unfrozen and frozen, hydrate‐free, and hydrate‐bearing sediments were experimentally determined Ice and hydrate distinctively affected the shearing characteristics and deformation behavior of sediments A physical model of microhydrate networks or frame structures was presumed to interpret the distinctive characteristics</description><subject>Bearing</subject><subject>Climate change</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Confining</subject><subject>Deformation</subject><subject>Drilling</subject><subject>Exploratory drilling</subject><subject>Frame structures</subject><subject>Freezing</subject><subject>gas hydrate</subject><subject>Gas hydrates</subject><subject>geomechanical properties</subject><subject>Geomechanics</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Hydrates</subject><subject>Ice</subject><subject>Internal friction</subject><subject>Methane</subject><subject>Methane hydrates</subject><subject>microhydrate networks</subject><subject>Natural gas exploration</subject><subject>Oil and gas exploration</subject><subject>Oil exploration</subject><subject>Permafrost</subject><subject>Properties</subject><subject>Properties (attributes)</subject><subject>Saturation</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Shear strength</subject><subject>Shearing</subject><subject>Stability</subject><subject>Stretching</subject><subject>Triaxial compression tests</subject><subject>triaxial shearing</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtOAzEMhkcIJBB0xwEisWUgTubJjkJpQZVAFNajNHFo0DxKkoK64wisOR4nIVUBwQZvbFnf79-Wo2gf6BFQVh4zCsVVn0KW8mwj2mGQlXHJ02zzpwa-HfWce6QhitCCZCd6HwpHRktlhUdHTEtu0DZC2875E3JunDet9OYZyUBrlJ50mvxRiFaRS4mka4mfIRli16CcidZIUZMb283RehO4oJuYZlEHkfpWf7y-9VFY0z78ciUTVKbB1ru9aEuL2mHvK-9G9xeDu7NRPL4eXp6djmPBOU1iJdKwGTLFtRIAqHLQCFrKdJoxwbJidWqSC87KPE9BqgQZ51gqYDBNMeO70cF67tx2Twt0vnrsFrYNlhVjAJSmeQGBOlxTMmzpLOpqbk0j7LICWq0eUP1-QMD5Gn8xNS7_Zaur4W0_5TxJ-CfC34mH</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Yang, J.</creator><creator>Hassanpouryouzband, A.</creator><creator>Tohidi, B.</creator><creator>Chuvilin, E.</creator><creator>Bukhanov, B.</creator><creator>Istomin, V.</creator><creator>Cheremisin, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4183-336X</orcidid><orcidid>https://orcid.org/0000-0002-7058-7244</orcidid><orcidid>https://orcid.org/0000-0002-3580-9120</orcidid><orcidid>https://orcid.org/0000-0002-2827-4228</orcidid></search><sort><creationdate>201903</creationdate><title>Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments</title><author>Yang, J. ; Hassanpouryouzband, A. ; Tohidi, B. ; Chuvilin, E. ; Bukhanov, B. ; Istomin, V. ; Cheremisin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bearing</topic><topic>Climate change</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Confining</topic><topic>Deformation</topic><topic>Drilling</topic><topic>Exploratory drilling</topic><topic>Frame structures</topic><topic>Freezing</topic><topic>gas hydrate</topic><topic>Gas hydrates</topic><topic>geomechanical properties</topic><topic>Geomechanics</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Hydrates</topic><topic>Ice</topic><topic>Internal friction</topic><topic>Methane</topic><topic>Methane hydrates</topic><topic>microhydrate networks</topic><topic>Natural gas exploration</topic><topic>Oil and gas exploration</topic><topic>Oil exploration</topic><topic>Permafrost</topic><topic>Properties</topic><topic>Properties (attributes)</topic><topic>Saturation</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Shear strength</topic><topic>Shearing</topic><topic>Stability</topic><topic>Stretching</topic><topic>Triaxial compression tests</topic><topic>triaxial shearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, J.</creatorcontrib><creatorcontrib>Hassanpouryouzband, A.</creatorcontrib><creatorcontrib>Tohidi, B.</creatorcontrib><creatorcontrib>Chuvilin, E.</creatorcontrib><creatorcontrib>Bukhanov, B.</creatorcontrib><creatorcontrib>Istomin, V.</creatorcontrib><creatorcontrib>Cheremisin, A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, J.</au><au>Hassanpouryouzband, A.</au><au>Tohidi, B.</au><au>Chuvilin, E.</au><au>Bukhanov, B.</au><au>Istomin, V.</au><au>Cheremisin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-03</date><risdate>2019</risdate><volume>124</volume><issue>3</issue><spage>2551</spage><epage>2563</epage><pages>2551-2563</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The geomechanical stability of the permafrost formations containing gas hydrates in the Arctic is extremely vulnerable to global warming and the drilling of wells for oil and gas exploration purposes. In this work the effect of gas hydrate and ice on the geomechanical properties of sediments was compared by triaxial compression tests for typical sediment conditions: unfrozen hydrate‐free sediments at 0.3 °C, hydrate‐free sediments frozen at −10 °C, unfrozen sediments containing about 22 vol% methane hydrate at 0.3 °C, and hydrate‐bearing sediments frozen at −10 °C. The effect of hydrate saturation on the geomechanical properties of simulated permafrost sediments was also investigated at predefined temperatures and confining pressures. Results show that ice and gas hydrates distinctively influence the shearing characteristics and deformation behavior. The presence of around 22 vol% methane hydrate in the unfrozen sediments led to a shear strength as strong as those of the frozen hydrate‐free specimens with 85 vol% of ice in the pores. The frozen hydrate‐free sediments experienced brittle‐like failure, while the hydrate‐bearing sediments showed large dilatation without rapid failure. Hydrate formation in the sediments resulted in a measurable reduction in the internal friction, while freezing did not. In contrast to ice, gas hydrate plays a dominant role in reinforcement of the simulated permafrost sediments. Finally, a new physical model was developed, based on formation of hydrate networks or frame structures to interpret the observed strengthening in the shear strength and the ductile deformation. Key Points Geomechanical properties of unfrozen and frozen, hydrate‐free, and hydrate‐bearing sediments were experimentally determined Ice and hydrate distinctively affected the shearing characteristics and deformation behavior of sediments A physical model of microhydrate networks or frame structures was presumed to interpret the distinctive characteristics</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016536</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4183-336X</orcidid><orcidid>https://orcid.org/0000-0002-7058-7244</orcidid><orcidid>https://orcid.org/0000-0002-3580-9120</orcidid><orcidid>https://orcid.org/0000-0002-2827-4228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2019-03, Vol.124 (3), p.2551-2563
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2211005781
source Wiley; Alma/SFX Local Collection
subjects Bearing
Climate change
Compression
Computer simulation
Confining
Deformation
Drilling
Exploratory drilling
Frame structures
Freezing
gas hydrate
Gas hydrates
geomechanical properties
Geomechanics
Geophysics
Global warming
Hydrates
Ice
Internal friction
Methane
Methane hydrates
microhydrate networks
Natural gas exploration
Oil and gas exploration
Oil exploration
Permafrost
Properties
Properties (attributes)
Saturation
Sediment
Sediments
Shear strength
Shearing
Stability
Stretching
Triaxial compression tests
triaxial shearing
title Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Hydrates%20in%20Permafrost:%20Distinctive%20Effect%20of%20Gas%20Hydrates%20and%20Ice%20on%20the%20Geomechanical%20Properties%20of%20Simulated%20Hydrate%E2%80%90Bearing%20Permafrost%20Sediments&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Yang,%20J.&rft.date=2019-03&rft.volume=124&rft.issue=3&rft.spage=2551&rft.epage=2563&rft.pages=2551-2563&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016536&rft_dat=%3Cproquest_cross%3E2211005781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3304-da5fece2d3fda11ed71fe1fcc5b62a268816947a3297751cd4e233e9d121b5e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211005781&rft_id=info:pmid/&rfr_iscdi=true