Loading…

Finite Element Analysis to Verify the Structural Integrity of an Aeronautical Gas Turbine Disc Made from Inconel 713LC Superalloy

Gas turbines are very important because they can be used in several areas, such as aeronautics and electric power generation systems. The operation of a gas turbine can be done by less pollutant fuels when compared to traditional kerosene, for example, resulting in less degradation to environment. G...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering forum 2019-04, Vol.32, p.15-26
Main Authors: Rodrigues, Túlio César, Barbosa de Jesus, Edilson Rosa, Menezes, João Carlos, Sarti Leme, Alexandre Domingos, Creci, Geraldo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gas turbines are very important because they can be used in several areas, such as aeronautics and electric power generation systems. The operation of a gas turbine can be done by less pollutant fuels when compared to traditional kerosene, for example, resulting in less degradation to environment. Gas turbines may fail from a variety of sources, with the possibility of serious damage results. In this work, the structural integrity of the hot disc of an aeronautical gas turbine is addressed. Several numerical analyses have been performed by the finite element method: Temperature Distributions, Thermal Stresses and Dilatations, Structural Stresses and Deformations, Modal Behaviors and Fatigue Analysis. Creep of blades has also been considered. These are the most important failure modes that can happen to the studied hot disc under operating service. All these analysis have been performed considering the boundary conditions at the design point with maximum rotational speed. The mesh of the problem has been strictly evaluated by adaptive refinement of nodes and elements combined with a convergence analysis of results. Then, the material and basic properties of the hot disc have been defined to assure a normal operation free from failures. Therefore, the mechanical drawings of the studied hot turbine disc have been released for manufacturing and the construction of the first prototype of the aeronautical gas turbine is in testing phase showing that the results presented in this work are consistent.
ISSN:2234-9898
2234-991X
2234-991X
DOI:10.4028/www.scientific.net/AEF.32.15