Loading…

Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer

In this paper, a context-sensitive energy curve based cross-entropy method for multilevel color image segmentation is proposed. In thresholding approaches, pixels are arranged in various regions based on their intensity level. The main challenge generally faced in multilevel thresholding is the sele...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2019-08, Vol.78 (16), p.22613-22641
Main Authors: Kandhway, Pankaj, Bhandari, Ashish Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a context-sensitive energy curve based cross-entropy method for multilevel color image segmentation is proposed. In thresholding approaches, pixels are arranged in various regions based on their intensity level. The main challenge generally faced in multilevel thresholding is the selection of best threshold values for the pixel division. However, the combination of the energy curve and the minimum cross entropy (Energy-MCE) scheme provides appropriate thresholds for a multilevel approach, but the computational cost for selecting optimal thresholds is high. Therefore, the selection of meta-heuristic optimization algorithms reduces this cost and generates optimal thresholds. A multi-verse optimizer (MVO) algorithm based on Energy-MCE thresholding approach is proposed to search the accurate and near-optimal thresholds for segmentation. Tests on natural images showed that the proposed method achieves better performance than the well-known optimization techniques in many challenging cases or images, such as identifying weak objects and revealing fine structures of complex objects while the added computational cost is minimal.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-019-7506-7