Loading…
Rainbow cosmic shear: Optimization of tomographic bins
In this paper, we address the problem of finding optimal cosmic shear tomographic bins. We generalize the definition of a cosmic shear tomographic bin to be a set of commonly labeled voxels in photometric color space; rather than bins defined directly in redshift. We explore this approach by using a...
Saved in:
Published in: | Physical review. D 2019-03, Vol.99 (6), Article 063536 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we address the problem of finding optimal cosmic shear tomographic bins. We generalize the definition of a cosmic shear tomographic bin to be a set of commonly labeled voxels in photometric color space; rather than bins defined directly in redshift. We explore this approach by using a self-organizing map to define the multidimensional color space, and a we define a “label space” of connected regions on the self-organizing map using overlapping elliptical disks. This allows us to then find optimal labeling schemes by searching the label space. We use a metric that is the signal-to-noise ratio of a dark energy equation of state measurement, and in this case we find that for up to five tomographic bins the optimal color-space labeling is an approximation of an equally spaced binning in redshift; that is in all cases the best configuration. We also show that such a redefinition is more robust to photometric redshift outliers than a standard tomographic bin selection. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.99.063536 |