Loading…
On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions
In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the sol...
Saved in:
Published in: | International journal of non-linear mechanics 2019-03, Vol.109, p.24-31 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423 |
container_end_page | 31 |
container_issue | |
container_start_page | 24 |
container_title | International journal of non-linear mechanics |
container_volume | 109 |
creator | Versaci, Mario Angiulli, Giovanni Fattorusso, Luisa Jannelli, Alessandra |
description | In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study. |
doi_str_mv | 10.1016/j.ijnonlinmec.2018.10.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212702262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746218306115</els_id><sourcerecordid>2212702262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</originalsourceid><addsrcrecordid>eNqNkc9uGyEQxlHVSnHdvANVz-sCy_47VpbbRErkQ5MzYmFIWO2CC6ylPFjfL6zdRMmtJ6Rhvt_MfB9CXynZUELr78PGDs670boJ1IYR2ub6hlD-Aa1o27RFVZftR7QihJGi4TW7QJ9jHEjWctKs0N-9w-kR8OzsnxkcxIi9OVWiH-dkvcPGByxxhMkWeQzIgGEc7SFZhXs_Oy3DEz7KcQZ8CL4fYXohTDD1QTrAt7vb31jD0So40QIo72IKs0rWPbzvzQxjR8DWYdlHcFmScQ-PPqbXleIX9MnIMcLlv3eN7n_u7rZXxc3-1_X2x02hSt6loqxMybTqmG47XnV1BYwT3XBCK9o1tG8r0oGmslE9qbIhzJjOGKlarhlIzso1-nbm5q2yPTGJwc_B5ZGCMcoawli9dHXnLhV8jAGMOAQ7ZVsEJWJJSQziTUpiSWn5yill7fashXzG0UIQUdnlam2zS0lob_-D8gzRNqUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212702262</pqid></control><display><type>article</type><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><source>Elsevier</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</creator><creatorcontrib>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</creatorcontrib><description>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.10.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary semi-linear elliptic equations ; Boundary value problems ; Curvature ; Electric fields ; Existence and uniqueness of the solution ; Mathematical models ; MEMS/NEMS devices ; Microelectromechanical systems ; Numerical methods ; Shooting method ; Uniqueness</subject><ispartof>International journal of non-linear mechanics, 2019-03, Vol.109, p.24-31</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</citedby><cites>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746218306115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3618,27903,27904,45990</link.rule.ids></links><search><creatorcontrib>Versaci, Mario</creatorcontrib><creatorcontrib>Angiulli, Giovanni</creatorcontrib><creatorcontrib>Fattorusso, Luisa</creatorcontrib><creatorcontrib>Jannelli, Alessandra</creatorcontrib><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><title>International journal of non-linear mechanics</title><description>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</description><subject>Boundary semi-linear elliptic equations</subject><subject>Boundary value problems</subject><subject>Curvature</subject><subject>Electric fields</subject><subject>Existence and uniqueness of the solution</subject><subject>Mathematical models</subject><subject>MEMS/NEMS devices</subject><subject>Microelectromechanical systems</subject><subject>Numerical methods</subject><subject>Shooting method</subject><subject>Uniqueness</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc9uGyEQxlHVSnHdvANVz-sCy_47VpbbRErkQ5MzYmFIWO2CC6ylPFjfL6zdRMmtJ6Rhvt_MfB9CXynZUELr78PGDs670boJ1IYR2ub6hlD-Aa1o27RFVZftR7QihJGi4TW7QJ9jHEjWctKs0N-9w-kR8OzsnxkcxIi9OVWiH-dkvcPGByxxhMkWeQzIgGEc7SFZhXs_Oy3DEz7KcQZ8CL4fYXohTDD1QTrAt7vb31jD0So40QIo72IKs0rWPbzvzQxjR8DWYdlHcFmScQ-PPqbXleIX9MnIMcLlv3eN7n_u7rZXxc3-1_X2x02hSt6loqxMybTqmG47XnV1BYwT3XBCK9o1tG8r0oGmslE9qbIhzJjOGKlarhlIzso1-nbm5q2yPTGJwc_B5ZGCMcoawli9dHXnLhV8jAGMOAQ7ZVsEJWJJSQziTUpiSWn5yill7fashXzG0UIQUdnlam2zS0lob_-D8gzRNqUb</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Versaci, Mario</creator><creator>Angiulli, Giovanni</creator><creator>Fattorusso, Luisa</creator><creator>Jannelli, Alessandra</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201903</creationdate><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><author>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary semi-linear elliptic equations</topic><topic>Boundary value problems</topic><topic>Curvature</topic><topic>Electric fields</topic><topic>Existence and uniqueness of the solution</topic><topic>Mathematical models</topic><topic>MEMS/NEMS devices</topic><topic>Microelectromechanical systems</topic><topic>Numerical methods</topic><topic>Shooting method</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Versaci, Mario</creatorcontrib><creatorcontrib>Angiulli, Giovanni</creatorcontrib><creatorcontrib>Fattorusso, Luisa</creatorcontrib><creatorcontrib>Jannelli, Alessandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Versaci, Mario</au><au>Angiulli, Giovanni</au><au>Fattorusso, Luisa</au><au>Jannelli, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2019-03</date><risdate>2019</risdate><volume>109</volume><spage>24</spage><epage>31</epage><pages>24-31</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.10.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2019-03, Vol.109, p.24-31 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2212702262 |
source | Elsevier; Backfile Package - Physics General (Legacy) [YPA] |
subjects | Boundary semi-linear elliptic equations Boundary value problems Curvature Electric fields Existence and uniqueness of the solution Mathematical models MEMS/NEMS devices Microelectromechanical systems Numerical methods Shooting method Uniqueness |
title | On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20uniqueness%20of%20the%20solution%20for%20a%20semi-linear%20elliptic%20boundary%20value%20problem%20of%20the%20membrane%20MEMS%20device%20for%20reconstructing%20the%20membrane%20profile%20in%20absence%20of%20ghost%20solutions&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Versaci,%20Mario&rft.date=2019-03&rft.volume=109&rft.spage=24&rft.epage=31&rft.pages=24-31&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.10.014&rft_dat=%3Cproquest_cross%3E2212702262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212702262&rft_id=info:pmid/&rfr_iscdi=true |