Loading…

On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions

In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the sol...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2019-03, Vol.109, p.24-31
Main Authors: Versaci, Mario, Angiulli, Giovanni, Fattorusso, Luisa, Jannelli, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423
cites cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423
container_end_page 31
container_issue
container_start_page 24
container_title International journal of non-linear mechanics
container_volume 109
creator Versaci, Mario
Angiulli, Giovanni
Fattorusso, Luisa
Jannelli, Alessandra
description In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.
doi_str_mv 10.1016/j.ijnonlinmec.2018.10.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212702262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746218306115</els_id><sourcerecordid>2212702262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</originalsourceid><addsrcrecordid>eNqNkc9uGyEQxlHVSnHdvANVz-sCy_47VpbbRErkQ5MzYmFIWO2CC6ylPFjfL6zdRMmtJ6Rhvt_MfB9CXynZUELr78PGDs670boJ1IYR2ub6hlD-Aa1o27RFVZftR7QihJGi4TW7QJ9jHEjWctKs0N-9w-kR8OzsnxkcxIi9OVWiH-dkvcPGByxxhMkWeQzIgGEc7SFZhXs_Oy3DEz7KcQZ8CL4fYXohTDD1QTrAt7vb31jD0So40QIo72IKs0rWPbzvzQxjR8DWYdlHcFmScQ-PPqbXleIX9MnIMcLlv3eN7n_u7rZXxc3-1_X2x02hSt6loqxMybTqmG47XnV1BYwT3XBCK9o1tG8r0oGmslE9qbIhzJjOGKlarhlIzso1-nbm5q2yPTGJwc_B5ZGCMcoawli9dHXnLhV8jAGMOAQ7ZVsEJWJJSQziTUpiSWn5yill7fashXzG0UIQUdnlam2zS0lob_-D8gzRNqUb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212702262</pqid></control><display><type>article</type><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><source>Elsevier</source><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</creator><creatorcontrib>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</creatorcontrib><description>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.10.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary semi-linear elliptic equations ; Boundary value problems ; Curvature ; Electric fields ; Existence and uniqueness of the solution ; Mathematical models ; MEMS/NEMS devices ; Microelectromechanical systems ; Numerical methods ; Shooting method ; Uniqueness</subject><ispartof>International journal of non-linear mechanics, 2019-03, Vol.109, p.24-31</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</citedby><cites>FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746218306115$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3618,27903,27904,45990</link.rule.ids></links><search><creatorcontrib>Versaci, Mario</creatorcontrib><creatorcontrib>Angiulli, Giovanni</creatorcontrib><creatorcontrib>Fattorusso, Luisa</creatorcontrib><creatorcontrib>Jannelli, Alessandra</creatorcontrib><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><title>International journal of non-linear mechanics</title><description>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</description><subject>Boundary semi-linear elliptic equations</subject><subject>Boundary value problems</subject><subject>Curvature</subject><subject>Electric fields</subject><subject>Existence and uniqueness of the solution</subject><subject>Mathematical models</subject><subject>MEMS/NEMS devices</subject><subject>Microelectromechanical systems</subject><subject>Numerical methods</subject><subject>Shooting method</subject><subject>Uniqueness</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkc9uGyEQxlHVSnHdvANVz-sCy_47VpbbRErkQ5MzYmFIWO2CC6ylPFjfL6zdRMmtJ6Rhvt_MfB9CXynZUELr78PGDs670boJ1IYR2ub6hlD-Aa1o27RFVZftR7QihJGi4TW7QJ9jHEjWctKs0N-9w-kR8OzsnxkcxIi9OVWiH-dkvcPGByxxhMkWeQzIgGEc7SFZhXs_Oy3DEz7KcQZ8CL4fYXohTDD1QTrAt7vb31jD0So40QIo72IKs0rWPbzvzQxjR8DWYdlHcFmScQ-PPqbXleIX9MnIMcLlv3eN7n_u7rZXxc3-1_X2x02hSt6loqxMybTqmG47XnV1BYwT3XBCK9o1tG8r0oGmslE9qbIhzJjOGKlarhlIzso1-nbm5q2yPTGJwc_B5ZGCMcoawli9dHXnLhV8jAGMOAQ7ZVsEJWJJSQziTUpiSWn5yill7fashXzG0UIQUdnlam2zS0lob_-D8gzRNqUb</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Versaci, Mario</creator><creator>Angiulli, Giovanni</creator><creator>Fattorusso, Luisa</creator><creator>Jannelli, Alessandra</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201903</creationdate><title>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</title><author>Versaci, Mario ; Angiulli, Giovanni ; Fattorusso, Luisa ; Jannelli, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary semi-linear elliptic equations</topic><topic>Boundary value problems</topic><topic>Curvature</topic><topic>Electric fields</topic><topic>Existence and uniqueness of the solution</topic><topic>Mathematical models</topic><topic>MEMS/NEMS devices</topic><topic>Microelectromechanical systems</topic><topic>Numerical methods</topic><topic>Shooting method</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Versaci, Mario</creatorcontrib><creatorcontrib>Angiulli, Giovanni</creatorcontrib><creatorcontrib>Fattorusso, Luisa</creatorcontrib><creatorcontrib>Jannelli, Alessandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Versaci, Mario</au><au>Angiulli, Giovanni</au><au>Fattorusso, Luisa</au><au>Jannelli, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2019-03</date><risdate>2019</risdate><volume>109</volume><spage>24</spage><epage>31</epage><pages>24-31</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>In this paper, the authors present a new condition of the uniqueness of the solution for a previous 1D semi-linear elliptic boundary value problem of membrane MEMS devices, where the amplitude of the electric field is considered proportional to the curvature of the membrane. The existence of the solution (membrane deflection) depends on the material of the membrane, which is obtained by Schauder–Tychonoff’s fixed point approach. Thus, in this paper, the result of uniqueness has been completely reformulated to obtain a condition depending on the material of the membrane achieving a new result of existence and uniqueness, depending on both the material of the membrane and the geometrical characteristics of the device. Then, by shooting numerical method, more realistic conditions for detecting eventual ghost solutions and new ranges of both operational parameters and mechanical tension of the membrane ensuring convergence have been achieved confirming the useful information on the industrial applicability of the model under study.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.10.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2019-03, Vol.109, p.24-31
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2212702262
source Elsevier; Backfile Package - Physics General (Legacy) [YPA]
subjects Boundary semi-linear elliptic equations
Boundary value problems
Curvature
Electric fields
Existence and uniqueness of the solution
Mathematical models
MEMS/NEMS devices
Microelectromechanical systems
Numerical methods
Shooting method
Uniqueness
title On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20uniqueness%20of%20the%20solution%20for%20a%20semi-linear%20elliptic%20boundary%20value%20problem%20of%20the%20membrane%20MEMS%20device%20for%20reconstructing%20the%20membrane%20profile%20in%20absence%20of%20ghost%20solutions&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Versaci,%20Mario&rft.date=2019-03&rft.volume=109&rft.spage=24&rft.epage=31&rft.pages=24-31&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.10.014&rft_dat=%3Cproquest_cross%3E2212702262%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-35f32dc92d8945965e240d740151971b8509ed1a7cb051642ff9ffac84d2ea423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212702262&rft_id=info:pmid/&rfr_iscdi=true