Loading…

Salidroside inhibits the growth, migration and invasion of Wilms' tumor cells through down-regulation of miR-891b

Aims Salidroside is a major functional component of Rhodiola rosea L. with a lot of pharmacological effects, including anti-tumor. The present work aimed to explore whether Salidroside could also exhibit anti-tumor functions in Wilms' tumor. Main methods WIT49 and RM1 cells were treated by vari...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) 2019-04, Vol.222, p.60
Main Authors: Li, Hai, Huang, Delian, Hang, Shiying
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims Salidroside is a major functional component of Rhodiola rosea L. with a lot of pharmacological effects, including anti-tumor. The present work aimed to explore whether Salidroside could also exhibit anti-tumor functions in Wilms' tumor. Main methods WIT49 and RM1 cells were treated by various doses of Salidroside. CCK-8 assay, flow cytometry detection, colony formation assay, Transwell assay, RT-qPCR and Western blot analysis were conducted to measure WIT49 and RM1 cells proliferation, apoptosis, migration and invasion. The expression changes of miR-891b in response to Salidroside treatment were tested by RT-qPCR. Rescue assays were performed to test whether miR-891b was a downstream effector of Salidroside. Finally, the involvement of PI3K/AKT/mTOR and NF-κB signaling pathways was studied. Key findings Salidroside with concentration of 80 μM significantly reduced WIT49 and RM1 cells viability, survival capacity, migration and invasion, and significantly induced apoptosis. Meanwhile, down-regulation of Cyclin D1, MMP-2 and Vimentin, up-regulations of p53 and p21, as well as cleavage of caspase-3 and -9 were observed in Salidroside-treated cell. miR-891b was down-regulated by Salidroside. And Salidroside did not suppress WIT49 and RM1 cells growth, migration and invasion when miR-891b was overexpressed. Also, the deactivation of PI3K/AKT/mTOR and NF-κB pathways induced by Salidroside was reversed by miR-891b overexpression. Significance Salidroside inhibits Wilms' tumor cells growth, migration and invasion via down-regulating miR-891b, which leads to the deactivation of PI3K/AKT/mTOR and NF-κB signaling pathways.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2019.02.052