Loading…
Stress relaxation behavior and life prediction of gasket materials used in proton exchange membrane fuel cells
Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubbe...
Saved in:
Published in: | Journal of Central South University 2019-03, Vol.26 (3), p.623-631 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time-temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately. |
---|---|
ISSN: | 2095-2899 2227-5223 |
DOI: | 10.1007/s11771-019-4033-7 |