Loading…
Dynamic guidance of orbiter gliders: alignment, final approach, and landing
A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM,...
Saved in:
Published in: | CEAS space journal 2019-06, Vol.11 (2), p.123-145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3 |
container_end_page | 145 |
container_issue | 2 |
container_start_page | 123 |
container_title | CEAS space journal |
container_volume | 11 |
creator | Fonseca, João Dilão, Rui |
description | A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below
1
∘
, descent path angles at the intended
-
2
∘
, and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s. |
doi_str_mv | 10.1007/s12567-018-0219-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212771613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212771613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpD2CzxNrAnR07Dhsqn6ISC8yWm9jBVeIUOx3670kVBBPL3Q3P--r0EHKJcI0AxU1CJmSRAaoMGJYZPyEzVFJlTCCc_t7AzskipS3ASOUAOc7I6_0hmM5XtNn72oTK0t7RPm78YCNtWl_bmG6paX0TOhuGJXU-mJaa3S72pvpcUhNq2o7Dh-aCnDnTJrv42XPy8fjwvnrO1m9PL6u7dVZxlENmlCwUYi2MLYqSC-QCbFlxVwJnQnGQaM1GKAu5Y0ZIK0yNqnYCKpmXteNzcjX1jj987W0a9Lbfx_GtpBlDVhQokY8UTlQV-5SidXoXfWfiQSPoozY9adOjNn3Upo8ZNmXSyIbGxr_m_0PfE0Vt5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212771613</pqid></control><display><type>article</type><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><source>Springer Nature</source><creator>Fonseca, João ; Dilão, Rui</creator><creatorcontrib>Fonseca, João ; Dilão, Rui</creatorcontrib><description>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below
1
∘
, descent path angles at the intended
-
2
∘
, and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</description><identifier>ISSN: 1868-2502</identifier><identifier>EISSN: 1868-2510</identifier><identifier>DOI: 10.1007/s12567-018-0219-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerospace Technology and Astronautics ; Algorithms ; Alignment ; Computer simulation ; Descent ; Energy management ; Engineering ; Gliders ; Initial conditions ; Landing ; Original Paper ; Runway alignment ; Steady state ; Terminal area energy management</subject><ispartof>CEAS space journal, 2019-06, Vol.11 (2), p.123-145</ispartof><rights>CEAS 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</citedby><cites>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</cites><orcidid>0000-0003-0190-4565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fonseca, João</creatorcontrib><creatorcontrib>Dilão, Rui</creatorcontrib><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><title>CEAS space journal</title><addtitle>CEAS Space J</addtitle><description>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below
1
∘
, descent path angles at the intended
-
2
∘
, and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Computer simulation</subject><subject>Descent</subject><subject>Energy management</subject><subject>Engineering</subject><subject>Gliders</subject><subject>Initial conditions</subject><subject>Landing</subject><subject>Original Paper</subject><subject>Runway alignment</subject><subject>Steady state</subject><subject>Terminal area energy management</subject><issn>1868-2502</issn><issn>1868-2510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EElXpD2CzxNrAnR07Dhsqn6ISC8yWm9jBVeIUOx3670kVBBPL3Q3P--r0EHKJcI0AxU1CJmSRAaoMGJYZPyEzVFJlTCCc_t7AzskipS3ASOUAOc7I6_0hmM5XtNn72oTK0t7RPm78YCNtWl_bmG6paX0TOhuGJXU-mJaa3S72pvpcUhNq2o7Dh-aCnDnTJrv42XPy8fjwvnrO1m9PL6u7dVZxlENmlCwUYi2MLYqSC-QCbFlxVwJnQnGQaM1GKAu5Y0ZIK0yNqnYCKpmXteNzcjX1jj987W0a9Lbfx_GtpBlDVhQokY8UTlQV-5SidXoXfWfiQSPoozY9adOjNn3Upo8ZNmXSyIbGxr_m_0PfE0Vt5A</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fonseca, João</creator><creator>Dilão, Rui</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0190-4565</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><author>Fonseca, João ; Dilão, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Computer simulation</topic><topic>Descent</topic><topic>Energy management</topic><topic>Engineering</topic><topic>Gliders</topic><topic>Initial conditions</topic><topic>Landing</topic><topic>Original Paper</topic><topic>Runway alignment</topic><topic>Steady state</topic><topic>Terminal area energy management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, João</creatorcontrib><creatorcontrib>Dilão, Rui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CEAS space journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, João</au><au>Dilão, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</atitle><jtitle>CEAS space journal</jtitle><stitle>CEAS Space J</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>123</spage><epage>145</epage><pages>123-145</pages><issn>1868-2502</issn><eissn>1868-2510</eissn><abstract>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below
1
∘
, descent path angles at the intended
-
2
∘
, and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s12567-018-0219-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0190-4565</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-2502 |
ispartof | CEAS space journal, 2019-06, Vol.11 (2), p.123-145 |
issn | 1868-2502 1868-2510 |
language | eng |
recordid | cdi_proquest_journals_2212771613 |
source | Springer Nature |
subjects | Aerospace Technology and Astronautics Algorithms Alignment Computer simulation Descent Energy management Engineering Gliders Initial conditions Landing Original Paper Runway alignment Steady state Terminal area energy management |
title | Dynamic guidance of orbiter gliders: alignment, final approach, and landing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20guidance%20of%20orbiter%20gliders:%20alignment,%20final%20approach,%20and%20landing&rft.jtitle=CEAS%20space%20journal&rft.au=Fonseca,%20Jo%C3%A3o&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=123&rft.epage=145&rft.pages=123-145&rft.issn=1868-2502&rft.eissn=1868-2510&rft_id=info:doi/10.1007/s12567-018-0219-3&rft_dat=%3Cproquest_cross%3E2212771613%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212771613&rft_id=info:pmid/&rfr_iscdi=true |