Loading…

Dynamic guidance of orbiter gliders: alignment, final approach, and landing

A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM,...

Full description

Saved in:
Bibliographic Details
Published in:CEAS space journal 2019-06, Vol.11 (2), p.123-145
Main Authors: Fonseca, João, Dilão, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3
cites cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3
container_end_page 145
container_issue 2
container_start_page 123
container_title CEAS space journal
container_volume 11
creator Fonseca, João
Dilão, Rui
description A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below 1 ∘ , descent path angles at the intended - 2 ∘ , and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.
doi_str_mv 10.1007/s12567-018-0219-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2212771613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212771613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpD2CzxNrAnR07Dhsqn6ISC8yWm9jBVeIUOx3670kVBBPL3Q3P--r0EHKJcI0AxU1CJmSRAaoMGJYZPyEzVFJlTCCc_t7AzskipS3ASOUAOc7I6_0hmM5XtNn72oTK0t7RPm78YCNtWl_bmG6paX0TOhuGJXU-mJaa3S72pvpcUhNq2o7Dh-aCnDnTJrv42XPy8fjwvnrO1m9PL6u7dVZxlENmlCwUYi2MLYqSC-QCbFlxVwJnQnGQaM1GKAu5Y0ZIK0yNqnYCKpmXteNzcjX1jj987W0a9Lbfx_GtpBlDVhQokY8UTlQV-5SidXoXfWfiQSPoozY9adOjNn3Upo8ZNmXSyIbGxr_m_0PfE0Vt5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212771613</pqid></control><display><type>article</type><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><source>Springer Nature</source><creator>Fonseca, João ; Dilão, Rui</creator><creatorcontrib>Fonseca, João ; Dilão, Rui</creatorcontrib><description>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&amp;L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&amp;L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below 1 ∘ , descent path angles at the intended - 2 ∘ , and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</description><identifier>ISSN: 1868-2502</identifier><identifier>EISSN: 1868-2510</identifier><identifier>DOI: 10.1007/s12567-018-0219-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aerospace Technology and Astronautics ; Algorithms ; Alignment ; Computer simulation ; Descent ; Energy management ; Engineering ; Gliders ; Initial conditions ; Landing ; Original Paper ; Runway alignment ; Steady state ; Terminal area energy management</subject><ispartof>CEAS space journal, 2019-06, Vol.11 (2), p.123-145</ispartof><rights>CEAS 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</citedby><cites>FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</cites><orcidid>0000-0003-0190-4565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fonseca, João</creatorcontrib><creatorcontrib>Dilão, Rui</creatorcontrib><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><title>CEAS space journal</title><addtitle>CEAS Space J</addtitle><description>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&amp;L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&amp;L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below 1 ∘ , descent path angles at the intended - 2 ∘ , and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</description><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Computer simulation</subject><subject>Descent</subject><subject>Energy management</subject><subject>Engineering</subject><subject>Gliders</subject><subject>Initial conditions</subject><subject>Landing</subject><subject>Original Paper</subject><subject>Runway alignment</subject><subject>Steady state</subject><subject>Terminal area energy management</subject><issn>1868-2502</issn><issn>1868-2510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EElXpD2CzxNrAnR07Dhsqn6ISC8yWm9jBVeIUOx3670kVBBPL3Q3P--r0EHKJcI0AxU1CJmSRAaoMGJYZPyEzVFJlTCCc_t7AzskipS3ASOUAOc7I6_0hmM5XtNn72oTK0t7RPm78YCNtWl_bmG6paX0TOhuGJXU-mJaa3S72pvpcUhNq2o7Dh-aCnDnTJrv42XPy8fjwvnrO1m9PL6u7dVZxlENmlCwUYi2MLYqSC-QCbFlxVwJnQnGQaM1GKAu5Y0ZIK0yNqnYCKpmXteNzcjX1jj987W0a9Lbfx_GtpBlDVhQokY8UTlQV-5SidXoXfWfiQSPoozY9adOjNn3Upo8ZNmXSyIbGxr_m_0PfE0Vt5A</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fonseca, João</creator><creator>Dilão, Rui</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0190-4565</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</title><author>Fonseca, João ; Dilão, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Computer simulation</topic><topic>Descent</topic><topic>Energy management</topic><topic>Engineering</topic><topic>Gliders</topic><topic>Initial conditions</topic><topic>Landing</topic><topic>Original Paper</topic><topic>Runway alignment</topic><topic>Steady state</topic><topic>Terminal area energy management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonseca, João</creatorcontrib><creatorcontrib>Dilão, Rui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CEAS space journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonseca, João</au><au>Dilão, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic guidance of orbiter gliders: alignment, final approach, and landing</atitle><jtitle>CEAS space journal</jtitle><stitle>CEAS Space J</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>123</spage><epage>145</epage><pages>123-145</pages><issn>1868-2502</issn><eissn>1868-2510</eissn><abstract>A new algorithm capable of guiding an orbiter glider to a target point with a prescribed alignment and descent path angle is presented. This algorithm can initiate Terminal Area Energy Management (TAEM) before reaching steady state and perform the Final Approach and Landing (FA&amp;L). During TAEM, runway alignment is done through a moving virtual target derived from steady state, while during FA&amp;L, a transient (or flare) is used to reach the extremely shallow descent path angles. All decisions are made dynamically relying solely on local information (position, speed, attitude, and atmospheric parameters), and all structural limits of the glider are respected at all times. As a proof of concept, a Space Shuttle return flight is simulated. For a large multitude of initial conditions and targets, the algorithm is able to consistently deliver distance errors below 19 m (transverse errors below 4 m), alignment errors below 1 ∘ , descent path angles at the intended - 2 ∘ , and vertical descent speeds below 8.5 m/s with control time intervals of 0.1 s.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s12567-018-0219-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0190-4565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-2502
ispartof CEAS space journal, 2019-06, Vol.11 (2), p.123-145
issn 1868-2502
1868-2510
language eng
recordid cdi_proquest_journals_2212771613
source Springer Nature
subjects Aerospace Technology and Astronautics
Algorithms
Alignment
Computer simulation
Descent
Energy management
Engineering
Gliders
Initial conditions
Landing
Original Paper
Runway alignment
Steady state
Terminal area energy management
title Dynamic guidance of orbiter gliders: alignment, final approach, and landing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20guidance%20of%20orbiter%20gliders:%20alignment,%20final%20approach,%20and%20landing&rft.jtitle=CEAS%20space%20journal&rft.au=Fonseca,%20Jo%C3%A3o&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=123&rft.epage=145&rft.pages=123-145&rft.issn=1868-2502&rft.eissn=1868-2510&rft_id=info:doi/10.1007/s12567-018-0219-3&rft_dat=%3Cproquest_cross%3E2212771613%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a867811d5ae779351350e9c3f9032583061eab58e04f2a56e5ad18df50c649df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212771613&rft_id=info:pmid/&rfr_iscdi=true