Loading…

Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5

Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P 5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. Not many precise upper bounds on these parameters have been obt...

Full description

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2019-03, Vol.60 (2), p.272-278
Main Authors: Borodin, O. V., Ivanova, A. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-44ab4271dc0ce0c9e3d29bcf9045c0a85b52be79f26e24584f8af9b7da83ff3c3
container_end_page 278
container_issue 2
container_start_page 272
container_title Siberian mathematical journal
container_volume 60
creator Borodin, O. V.
Ivanova, A. O.
description Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P 5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in P 5 . Given a 3-polytope P , by w ( P ) denote the minimum of the maximum degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P . In 1996, Jendrol’ and Madaras showed that if a polytope P in P 5 is allowed to have a 5-vertex adjacent to four 5-vertices (called a minor (5, 5, 5, 5, ∞)- star ), then w ( P ) can be arbitrarily large. For each P * in P 5 with neither vertices of degree 6 and 7 nor minor (5, 5, 5, 5, ∞)-star, it follows from Lebesgue’s Theorem that w ( P *) ≤ 51. We prove that every such polytope P * satisfies w ( P *) ≤ 42, which bound is sharp. This result is also best possible in the sense that if 6-vertices are allowed but 7-vertices forbidden, or vice versa; then the weight of all minor 5-stars in P 5 under the absence of minor (5, 5, 5, 5, ∞)-stars can reach 43 or 44, respectively.
doi_str_mv 10.1134/S0037446619020071
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2214145792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214145792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-44ab4271dc0ce0c9e3d29bcf9045c0a85b52be79f26e24584f8af9b7da83ff3c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAcxIMoWFc_gLeA5-o_r6Y5yvqEisLquaRp0u2yfZi0yH57Wyp4EE9zmN_MwCB0SeCaEMZvNgBMcp4kRAEFkOQIRURIFiuawDGKZjue_VN0FsIOgAAkKkJpVlfbAb_UbeexiDeD9gHXLWbxW7c_DF1vA_6qh-1M1M3Y4DtbeWuxOEcnTu-DvfjRFfp4uH9fP8XZ6-Pz-jaLDU3SYZrUBaeSlAaMBaMsK6kqjFPAhQGdikLQwkrlaGIpFyl3qXaqkKVOmXPMsBW6Wnp7332ONgz5rht9O03mlBJOuJCKThRZKOO7ELx1ee_rRvtDTiCfD8r_HDRl6JIJE9tW1v82_x_6Bjx4ZTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214145792</pqid></control><display><type>article</type><title>Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5</title><source>Springer Nature</source><creator>Borodin, O. V. ; Ivanova, A. O.</creator><creatorcontrib>Borodin, O. V. ; Ivanova, A. O.</creatorcontrib><description>Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P 5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in P 5 . Given a 3-polytope P , by w ( P ) denote the minimum of the maximum degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P . In 1996, Jendrol’ and Madaras showed that if a polytope P in P 5 is allowed to have a 5-vertex adjacent to four 5-vertices (called a minor (5, 5, 5, 5, ∞)- star ), then w ( P ) can be arbitrarily large. For each P * in P 5 with neither vertices of degree 6 and 7 nor minor (5, 5, 5, 5, ∞)-star, it follows from Lebesgue’s Theorem that w ( P *) ≤ 51. We prove that every such polytope P * satisfies w ( P *) ≤ 42, which bound is sharp. This result is also best possible in the sense that if 6-vertices are allowed but 7-vertices forbidden, or vice versa; then the weight of all minor 5-stars in P 5 under the absence of minor (5, 5, 5, 5, ∞)-stars can reach 43 or 44, respectively.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446619020071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Apexes ; Four color problem ; Mathematics ; Mathematics and Statistics ; Parameters ; Polytopes ; Stars ; Upper bounds ; Weight</subject><ispartof>Siberian mathematical journal, 2019-03, Vol.60 (2), p.272-278</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-44ab4271dc0ce0c9e3d29bcf9045c0a85b52be79f26e24584f8af9b7da83ff3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Borodin, O. V.</creatorcontrib><creatorcontrib>Ivanova, A. O.</creatorcontrib><title>Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P 5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in P 5 . Given a 3-polytope P , by w ( P ) denote the minimum of the maximum degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P . In 1996, Jendrol’ and Madaras showed that if a polytope P in P 5 is allowed to have a 5-vertex adjacent to four 5-vertices (called a minor (5, 5, 5, 5, ∞)- star ), then w ( P ) can be arbitrarily large. For each P * in P 5 with neither vertices of degree 6 and 7 nor minor (5, 5, 5, 5, ∞)-star, it follows from Lebesgue’s Theorem that w ( P *) ≤ 51. We prove that every such polytope P * satisfies w ( P *) ≤ 42, which bound is sharp. This result is also best possible in the sense that if 6-vertices are allowed but 7-vertices forbidden, or vice versa; then the weight of all minor 5-stars in P 5 under the absence of minor (5, 5, 5, 5, ∞)-stars can reach 43 or 44, respectively.</description><subject>Apexes</subject><subject>Four color problem</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><subject>Polytopes</subject><subject>Stars</subject><subject>Upper bounds</subject><subject>Weight</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAcxIMoWFc_gLeA5-o_r6Y5yvqEisLquaRp0u2yfZi0yH57Wyp4EE9zmN_MwCB0SeCaEMZvNgBMcp4kRAEFkOQIRURIFiuawDGKZjue_VN0FsIOgAAkKkJpVlfbAb_UbeexiDeD9gHXLWbxW7c_DF1vA_6qh-1M1M3Y4DtbeWuxOEcnTu-DvfjRFfp4uH9fP8XZ6-Pz-jaLDU3SYZrUBaeSlAaMBaMsK6kqjFPAhQGdikLQwkrlaGIpFyl3qXaqkKVOmXPMsBW6Wnp7332ONgz5rht9O03mlBJOuJCKThRZKOO7ELx1ee_rRvtDTiCfD8r_HDRl6JIJE9tW1v82_x_6Bjx4ZTI</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Borodin, O. V.</creator><creator>Ivanova, A. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5</title><author>Borodin, O. V. ; Ivanova, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-44ab4271dc0ce0c9e3d29bcf9045c0a85b52be79f26e24584f8af9b7da83ff3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Four color problem</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><topic>Polytopes</topic><topic>Stars</topic><topic>Upper bounds</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, O. V.</creatorcontrib><creatorcontrib>Ivanova, A. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, O. V.</au><au>Ivanova, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>60</volume><issue>2</issue><spage>272</spage><epage>278</epage><pages>272-278</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>Attempting to solve the Four Color Problem in 1940, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P 5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in P 5 . Given a 3-polytope P , by w ( P ) denote the minimum of the maximum degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P . In 1996, Jendrol’ and Madaras showed that if a polytope P in P 5 is allowed to have a 5-vertex adjacent to four 5-vertices (called a minor (5, 5, 5, 5, ∞)- star ), then w ( P ) can be arbitrarily large. For each P * in P 5 with neither vertices of degree 6 and 7 nor minor (5, 5, 5, 5, ∞)-star, it follows from Lebesgue’s Theorem that w ( P *) ≤ 51. We prove that every such polytope P * satisfies w ( P *) ≤ 42, which bound is sharp. This result is also best possible in the sense that if 6-vertices are allowed but 7-vertices forbidden, or vice versa; then the weight of all minor 5-stars in P 5 under the absence of minor (5, 5, 5, 5, ∞)-stars can reach 43 or 44, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446619020071</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2019-03, Vol.60 (2), p.272-278
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2214145792
source Springer Nature
subjects Apexes
Four color problem
Mathematics
Mathematics and Statistics
Parameters
Polytopes
Stars
Upper bounds
Weight
title Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20Minor%205-Stars%20in%203-Polytopes%20with%20Minimum%20Degree%205&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Borodin,%20O.%20V.&rft.date=2019-03-01&rft.volume=60&rft.issue=2&rft.spage=272&rft.epage=278&rft.pages=272-278&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446619020071&rft_dat=%3Cproquest_cross%3E2214145792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-44ab4271dc0ce0c9e3d29bcf9045c0a85b52be79f26e24584f8af9b7da83ff3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2214145792&rft_id=info:pmid/&rfr_iscdi=true