Loading…

A Distributed Coordination Control Based on Finite-Time Consensus Algorithm for a Cluster of DC Microgrids

A cluster of dc microgrids consisting of multiple interconnected dc microgrids has great potential for improving the reliability and reducing the cost of power generation. In this paper, a distributed coordination control strategy is proposed to overcome a series of problems of centralized control....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2019-05, Vol.34 (3), p.2205-2215
Main Authors: Li, Yilin, Dong, Ping, Liu, Mingbo, Yang, Guokang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A cluster of dc microgrids consisting of multiple interconnected dc microgrids has great potential for improving the reliability and reducing the cost of power generation. In this paper, a distributed coordination control strategy is proposed to overcome a series of problems of centralized control. This control strategy which adopts a hierarchical structure is based on the droop control method, then a modified control formula which achieves multi-objective is introduced to the voltage control and power generation cost control. Besides, a finite-time consensus algorithm is applied to obtain the average value obtained in finite steps. Meanwhile, an estimated connected topology is proposed for better utilisation of the finite-time consensus algorithm and acceleration of the convergence speed. This proposed topology ensures all this control method is a fully distributed one, which does not require the global information previously and has high reliability. By using the MATLAB/Simulink simulation platform, this proposed control strategy is verified in one dc microgrid and a cluster of those containing 4 dc microgrids. The simulation results under different scenarios all indicate the effectiveness of the proposed methods.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2018.2878769