Loading…

A neural network-based framework for financial model calibration

A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on av...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-04
Main Authors: Liu, Shuaiqiang, Borovykh, Anastasia, Grzelak, Lech A, Oosterlee, Cornelis W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Shuaiqiang
Borovykh, Anastasia
Grzelak, Lech A
Oosterlee, Cornelis W
description A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.
doi_str_mv 10.48550/arxiv.1904.10523
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2214596863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2214596863</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-a42eaf6320292835d4c212960564a6412a82cac23e1f213deaf4d5c4a57d99e73</originalsourceid><addsrcrecordid>eNotjstqwzAUREWh0JDmA7oTZG1XuleSrV1D6AsC3WQfbvQAJ47Uynbbz69LuzoMHGaGsTspatVqLe6pfHeftbRC1VJowCu2AERZtQrghq2G4SSEANOA1rhgDxuewlSonzF-5XKujjQEz2OhS_jNPObCY5couW62LtmHnjvqu2Ohscvpll1H6oew-ueS7Z8e99uXavf2_Lrd7CqaP1SkIFA0CAIstKi9ciDBGqGNIqMkUAuOHGCQEST6WVZeO0W68daGBpds_Vf7XvLHFIbxcMpTSfPiAUAqbU1rEH8AP71KVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2214596863</pqid></control><display><type>article</type><title>A neural network-based framework for financial model calibration</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Shuaiqiang ; Borovykh, Anastasia ; Grzelak, Lech A ; Oosterlee, Cornelis W</creator><creatorcontrib>Liu, Shuaiqiang ; Borovykh, Anastasia ; Grzelak, Lech A ; Oosterlee, Cornelis W</creatorcontrib><description>A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.10523</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Calibration ; Global optimization ; Learning theory ; Machine learning ; Mathematical models ; Neural networks ; Neurons ; Parameters ; Securities prices ; Volatility</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2214596863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Liu, Shuaiqiang</creatorcontrib><creatorcontrib>Borovykh, Anastasia</creatorcontrib><creatorcontrib>Grzelak, Lech A</creatorcontrib><creatorcontrib>Oosterlee, Cornelis W</creatorcontrib><title>A neural network-based framework for financial model calibration</title><title>arXiv.org</title><description>A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.</description><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Global optimization</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parameters</subject><subject>Securities prices</subject><subject>Volatility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAUREWh0JDmA7oTZG1XuleSrV1D6AsC3WQfbvQAJ47Uynbbz69LuzoMHGaGsTspatVqLe6pfHeftbRC1VJowCu2AERZtQrghq2G4SSEANOA1rhgDxuewlSonzF-5XKujjQEz2OhS_jNPObCY5couW62LtmHnjvqu2Ohscvpll1H6oew-ueS7Z8e99uXavf2_Lrd7CqaP1SkIFA0CAIstKi9ciDBGqGNIqMkUAuOHGCQEST6WVZeO0W68daGBpds_Vf7XvLHFIbxcMpTSfPiAUAqbU1rEH8AP71KVQ</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Liu, Shuaiqiang</creator><creator>Borovykh, Anastasia</creator><creator>Grzelak, Lech A</creator><creator>Oosterlee, Cornelis W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190423</creationdate><title>A neural network-based framework for financial model calibration</title><author>Liu, Shuaiqiang ; Borovykh, Anastasia ; Grzelak, Lech A ; Oosterlee, Cornelis W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-a42eaf6320292835d4c212960564a6412a82cac23e1f213deaf4d5c4a57d99e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Global optimization</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parameters</topic><topic>Securities prices</topic><topic>Volatility</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuaiqiang</creatorcontrib><creatorcontrib>Borovykh, Anastasia</creatorcontrib><creatorcontrib>Grzelak, Lech A</creatorcontrib><creatorcontrib>Oosterlee, Cornelis W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuaiqiang</au><au>Borovykh, Anastasia</au><au>Grzelak, Lech A</au><au>Oosterlee, Cornelis W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network-based framework for financial model calibration</atitle><jtitle>arXiv.org</jtitle><date>2019-04-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A data-driven approach called CaNN (Calibration Neural Network) is proposed to calibrate financial asset price models using an Artificial Neural Network (ANN). Determining optimal values of the model parameters is formulated as training hidden neurons within a machine learning framework, based on available financial option prices. The framework consists of two parts: a forward pass in which we train the weights of the ANN off-line, valuing options under many different asset model parameter settings; and a backward pass, in which we evaluate the trained ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The rapid on-line learning of implied volatility by ANNs, in combination with the use of an adapted parallel global optimization method, tackles the computation bottleneck and provides a fast and reliable technique for calibrating model parameters while avoiding, as much as possible, getting stuck in local minima. Numerical experiments confirm that this machine-learning framework can be employed to calibrate parameters of high-dimensional stochastic volatility models efficiently and accurately.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.10523</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2214596863
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Artificial neural networks
Calibration
Global optimization
Learning theory
Machine learning
Mathematical models
Neural networks
Neurons
Parameters
Securities prices
Volatility
title A neural network-based framework for financial model calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network-based%20framework%20for%20financial%20model%20calibration&rft.jtitle=arXiv.org&rft.au=Liu,%20Shuaiqiang&rft.date=2019-04-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.10523&rft_dat=%3Cproquest%3E2214596863%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-a42eaf6320292835d4c212960564a6412a82cac23e1f213deaf4d5c4a57d99e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2214596863&rft_id=info:pmid/&rfr_iscdi=true