Loading…

ZrC Based Ceramics by High Pressure High Temperature SPS Technique

Zirconium carbide based materials were consolidated via spark plasma sintering and high-pressure high-temperature (HPHT) sintering methods. Fully dense ZrC-TiC compacts were produced by HTHP SPS technique at 1600-1700°C and were characterized by 370 GPa and 23.7 GPa values of Young’s modulus and Vic...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2019-04, Vol.799, p.125-130
Main Authors: Cygan, Slawomir, Hussainova, Irina, Aydinyan, Sofiya, Minasyan, Tatevik, Liu, Le
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zirconium carbide based materials were consolidated via spark plasma sintering and high-pressure high-temperature (HPHT) sintering methods. Fully dense ZrC-TiC compacts were produced by HTHP SPS technique at 1600-1700°C and were characterized by 370 GPa and 23.7 GPa values of Young’s modulus and Vickers microhardness, respectively. By the addition of 2 wt.% silicon nitride, the compacts of a full density were obtained at 1600°C; however, the further addition of Si3N4 resulted in a decrease in both density and hardness. Oxidation behavior in air of the ZrC-TiC and ZrC-TiC-Si3N4 compacts was explored by high temperature XRD method showing intensive oxidation at ~1000°C. Microstructural analysis certified that the addition of certain amount of Si3N4 increases the phase distribution homogeneity and contributes to the microstructure refinement.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.799.125