Loading…

Parallel Analysis with Unidimensional Binary Data

The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70...

Full description

Saved in:
Bibliographic Details
Published in:Educational and psychological measurement 2005-10, Vol.65 (5), p.697-716
Main Authors: Weng, Li-Jen, Cheng, Chung-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333
cites cdi_FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333
container_end_page 716
container_issue 5
container_start_page 697
container_title Educational and psychological measurement
container_volume 65
creator Weng, Li-Jen
Cheng, Chung-Ping
description The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation coefficients (phi and tetrachoric correlations) were manipulated. The results indicated that parallel analysis performed well in identifying the number of factors. The performance improved as factor loading and sample size increased and as the percentages of responses on two categories became close. Using the 95th and 99th percentiles of the random data eigenvalues as the criteria for comparison in parallel analysis yielded higher correct rate than using mean eigenvalues.
doi_str_mv 10.1177/0013164404273941
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_221549013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ718008</ericid><sage_id>10.1177_0013164404273941</sage_id><sourcerecordid>906036981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMLOwBCxG-5iO3bGUspLlWCgc-QkNrhKk2KnQv33OAoCCYlbTrrvcd8dIecIV4hSXgMgw4xz4KlkOccDMkEhUsqUUodkMsB0wI_JSQhriMURJwRftNdNY5pk1upmH1xIPl3_nqxaV7uNaYPr4jy5ca32--RW9_qUHFndBHP23adkdbd4nT_Q5fP943y2pJqJtKelEhVLra2zUljL0WQcpcryLC9lbUVtciWUQLSlVFAyBboyUImqBlVqwRibksvRd-u7j50JfbHudj6GCUWaouB5vCiSYCRVvgvBG1tsvdvEqAVCMfyl-PuXKLkYJca76oe-eJKoAFSE6QgH_WZ-V_5r9wU1r2md</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221549013</pqid></control><display><type>article</type><title>Parallel Analysis with Unidimensional Binary Data</title><source>ERIC</source><source>SAGE</source><creator>Weng, Li-Jen ; Cheng, Chung-Ping</creator><creatorcontrib>Weng, Li-Jen ; Cheng, Chung-Ping</creatorcontrib><description>The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation coefficients (phi and tetrachoric correlations) were manipulated. The results indicated that parallel analysis performed well in identifying the number of factors. The performance improved as factor loading and sample size increased and as the percentages of responses on two categories became close. Using the 95th and 99th percentiles of the random data eigenvalues as the criteria for comparison in parallel analysis yielded higher correct rate than using mean eigenvalues.</description><identifier>ISSN: 0013-1644</identifier><identifier>EISSN: 1552-3888</identifier><identifier>DOI: 10.1177/0013164404273941</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Comparative analysis ; Correlation ; Correlation analysis ; Data Analysis ; Eigenvalues ; Evaluation Methods ; Factor Analysis ; Responses ; Sample Size</subject><ispartof>Educational and psychological measurement, 2005-10, Vol.65 (5), p.697-716</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Oct 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333</citedby><cites>FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79236</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ718008$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Li-Jen</creatorcontrib><creatorcontrib>Cheng, Chung-Ping</creatorcontrib><title>Parallel Analysis with Unidimensional Binary Data</title><title>Educational and psychological measurement</title><description>The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation coefficients (phi and tetrachoric correlations) were manipulated. The results indicated that parallel analysis performed well in identifying the number of factors. The performance improved as factor loading and sample size increased and as the percentages of responses on two categories became close. Using the 95th and 99th percentiles of the random data eigenvalues as the criteria for comparison in parallel analysis yielded higher correct rate than using mean eigenvalues.</description><subject>Comparative analysis</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data Analysis</subject><subject>Eigenvalues</subject><subject>Evaluation Methods</subject><subject>Factor Analysis</subject><subject>Responses</subject><subject>Sample Size</subject><issn>0013-1644</issn><issn>1552-3888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNp1UDtPwzAQthBIlMLOwBCxG-5iO3bGUspLlWCgc-QkNrhKk2KnQv33OAoCCYlbTrrvcd8dIecIV4hSXgMgw4xz4KlkOccDMkEhUsqUUodkMsB0wI_JSQhriMURJwRftNdNY5pk1upmH1xIPl3_nqxaV7uNaYPr4jy5ca32--RW9_qUHFndBHP23adkdbd4nT_Q5fP943y2pJqJtKelEhVLra2zUljL0WQcpcryLC9lbUVtciWUQLSlVFAyBboyUImqBlVqwRibksvRd-u7j50JfbHudj6GCUWaouB5vCiSYCRVvgvBG1tsvdvEqAVCMfyl-PuXKLkYJca76oe-eJKoAFSE6QgH_WZ-V_5r9wU1r2md</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Weng, Li-Jen</creator><creator>Cheng, Chung-Ping</creator><general>SAGE Publications</general><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051001</creationdate><title>Parallel Analysis with Unidimensional Binary Data</title><author>Weng, Li-Jen ; Cheng, Chung-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Comparative analysis</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data Analysis</topic><topic>Eigenvalues</topic><topic>Evaluation Methods</topic><topic>Factor Analysis</topic><topic>Responses</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Li-Jen</creatorcontrib><creatorcontrib>Cheng, Chung-Ping</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Educational and psychological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Li-Jen</au><au>Cheng, Chung-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ718008</ericid><atitle>Parallel Analysis with Unidimensional Binary Data</atitle><jtitle>Educational and psychological measurement</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>65</volume><issue>5</issue><spage>697</spage><epage>716</epage><pages>697-716</pages><issn>0013-1644</issn><eissn>1552-3888</eissn><abstract>The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation coefficients (phi and tetrachoric correlations) were manipulated. The results indicated that parallel analysis performed well in identifying the number of factors. The performance improved as factor loading and sample size increased and as the percentages of responses on two categories became close. Using the 95th and 99th percentiles of the random data eigenvalues as the criteria for comparison in parallel analysis yielded higher correct rate than using mean eigenvalues.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0013164404273941</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-1644
ispartof Educational and psychological measurement, 2005-10, Vol.65 (5), p.697-716
issn 0013-1644
1552-3888
language eng
recordid cdi_proquest_journals_221549013
source ERIC; SAGE
subjects Comparative analysis
Correlation
Correlation analysis
Data Analysis
Eigenvalues
Evaluation Methods
Factor Analysis
Responses
Sample Size
title Parallel Analysis with Unidimensional Binary Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Analysis%20with%20Unidimensional%20Binary%20Data&rft.jtitle=Educational%20and%20psychological%20measurement&rft.au=Weng,%20Li-Jen&rft.date=2005-10-01&rft.volume=65&rft.issue=5&rft.spage=697&rft.epage=716&rft.pages=697-716&rft.issn=0013-1644&rft.eissn=1552-3888&rft_id=info:doi/10.1177/0013164404273941&rft_dat=%3Cproquest_cross%3E906036981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a352t-b85c32ffd6b5ff41e641786969b7df5de9858511fb780b380ace0c5cd08ba5333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=221549013&rft_id=info:pmid/&rft_ericid=EJ718008&rft_sage_id=10.1177_0013164404273941&rfr_iscdi=true