Loading…
Advances in phenology are conserved across scale in present and future climates
Warming temperatures are advancing the timing of seasonal vegetation development in the extratropics, altering plant–animal interactions and increasing the risk of trophic asynchrony. Forest understories are critical yet under-observed ecosystems in which phenological patterns are both altered and o...
Saved in:
Published in: | Nature climate change 2019-05, Vol.9 (5), p.419-425 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Warming temperatures are advancing the timing of seasonal vegetation development in the extratropics, altering plant–animal interactions and increasing the risk of trophic asynchrony. Forest understories are critical yet under-observed ecosystems in which phenological patterns are both altered and obscured by overstory trees. We address the challenge of observing phenological dynamics in the understory by exploiting the physiological relationship between plant phenology and temperature accumulation, a horticultural principle we show to be preserved across spatial scales through a combination of field and growth-chamber observations. These observations provide the foundation for a spaceborne thermal-observation framework, which can trace the discrete phenophases of forest understory plants in near-real time. The thermal basis of this framework also enables the prediction of understory phenology for future climates, which we demonstrate here using
Shepherdia canadensis
, a widespread fruiting shrub of western North America that has important trophic connections to frugivores. Our approach enables researchers to assess the regional-scale impacts of climate change on bottom-up forest ecosystems and to monitor emerging trophic mismatches.
Spaceborne thermal observation is used to monitor discrete phenophases of forest understory plants in near-real time and the thermal relationship is used to project phenological changes under future climates. |
---|---|
ISSN: | 1758-678X 1758-6798 |
DOI: | 10.1038/s41558-019-0454-4 |