Loading…

Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem

In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2019-06, Vol.38 (2), p.1-16, Article 93
Main Authors: Morcos, Noura, Sayah, Toni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3
cites cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3
container_end_page 16
container_issue 2
container_start_page 1
container_title Computational & applied mathematics
container_volume 38
creator Morcos, Noura
Sayah, Toni
description In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.
doi_str_mv 10.1007/s40314-019-0859-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2215569103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215569103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19E8m3Ypgy9QBNF1SPOwHdumJpmF_94MHXDl6l643znncgC4JPiaYCxvEseMcIRJg3AtGlQfgRWpsUSYYXoMVpSyGrEKs1NwltIWYyYJ5yvw9ebszjgLW536BEeXu2ChDxHmzkFt9ZzLcXSpg3qy8CVM2cGNjkM4sAnqeR76AuVQEOiGoZ9zb2DKwXQ67dc5hnZw4zk48XpI7uIw1-Dj_u5984ieXx-eNrfPyDDRZORlSyTlsvIVcVRw4r3l1OjWcGK9peXxxrpWMtYKbwQjglUV41xza7WTnq3B1eJbcr93LmW1Dbs4lUhFKRGiaghmhSILZWJIKTqv5tiPOv4ogtW-U7V0qkqnat-pqouGLppU2OnTxT_n_0W_KeR6VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215569103</pqid></control><display><type>article</type><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><source>Springer Nature</source><creator>Morcos, Noura ; Sayah, Toni</creator><creatorcontrib>Morcos, Noura ; Sayah, Toni</creatorcontrib><description>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-019-0859-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation</subject><ispartof>Computational &amp; applied mathematics, 2019-06, Vol.38 (2), p.1-16, Article 93</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</citedby><cites>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morcos, Noura</creatorcontrib><creatorcontrib>Sayah, Toni</creatorcontrib><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19E8m3Ypgy9QBNF1SPOwHdumJpmF_94MHXDl6l643znncgC4JPiaYCxvEseMcIRJg3AtGlQfgRWpsUSYYXoMVpSyGrEKs1NwltIWYyYJ5yvw9ebszjgLW536BEeXu2ChDxHmzkFt9ZzLcXSpg3qy8CVM2cGNjkM4sAnqeR76AuVQEOiGoZ9zb2DKwXQ67dc5hnZw4zk48XpI7uIw1-Dj_u5984ieXx-eNrfPyDDRZORlSyTlsvIVcVRw4r3l1OjWcGK9peXxxrpWMtYKbwQjglUV41xza7WTnq3B1eJbcr93LmW1Dbs4lUhFKRGiaghmhSILZWJIKTqv5tiPOv4ogtW-U7V0qkqnat-pqouGLppU2OnTxT_n_0W_KeR6VA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Morcos, Noura</creator><creator>Sayah, Toni</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><author>Morcos, Noura ; Sayah, Toni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morcos, Noura</creatorcontrib><creatorcontrib>Sayah, Toni</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morcos, Noura</au><au>Sayah, Toni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>93</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-019-0859-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2019-06, Vol.38 (2), p.1-16, Article 93
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2215569103
source Springer Nature
subjects Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Monte Carlo simulation
title Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20basis%20method%20for%20the%20adapted%20mesh%20and%20Monte%20Carlo%20methods%20applied%20to%20an%20elliptic%20stochastic%20problem&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Morcos,%20Noura&rft.date=2019-06-01&rft.volume=38&rft.issue=2&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=93&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-019-0859-8&rft_dat=%3Cproquest_cross%3E2215569103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215569103&rft_id=info:pmid/&rfr_iscdi=true