Loading…
Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem
In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with...
Saved in:
Published in: | Computational & applied mathematics 2019-06, Vol.38 (2), p.1-16, Article 93 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3 |
container_end_page | 16 |
container_issue | 2 |
container_start_page | 1 |
container_title | Computational & applied mathematics |
container_volume | 38 |
creator | Morcos, Noura Sayah, Toni |
description | In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm. |
doi_str_mv | 10.1007/s40314-019-0859-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2215569103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215569103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19E8m3Ypgy9QBNF1SPOwHdumJpmF_94MHXDl6l643znncgC4JPiaYCxvEseMcIRJg3AtGlQfgRWpsUSYYXoMVpSyGrEKs1NwltIWYyYJ5yvw9ebszjgLW536BEeXu2ChDxHmzkFt9ZzLcXSpg3qy8CVM2cGNjkM4sAnqeR76AuVQEOiGoZ9zb2DKwXQ67dc5hnZw4zk48XpI7uIw1-Dj_u5984ieXx-eNrfPyDDRZORlSyTlsvIVcVRw4r3l1OjWcGK9peXxxrpWMtYKbwQjglUV41xza7WTnq3B1eJbcr93LmW1Dbs4lUhFKRGiaghmhSILZWJIKTqv5tiPOv4ogtW-U7V0qkqnat-pqouGLppU2OnTxT_n_0W_KeR6VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215569103</pqid></control><display><type>article</type><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><source>Springer Nature</source><creator>Morcos, Noura ; Sayah, Toni</creator><creatorcontrib>Morcos, Noura ; Sayah, Toni</creatorcontrib><description>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-019-0859-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation</subject><ispartof>Computational & applied mathematics, 2019-06, Vol.38 (2), p.1-16, Article 93</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</citedby><cites>FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morcos, Noura</creatorcontrib><creatorcontrib>Sayah, Toni</creatorcontrib><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19E8m3Ypgy9QBNF1SPOwHdumJpmF_94MHXDl6l643znncgC4JPiaYCxvEseMcIRJg3AtGlQfgRWpsUSYYXoMVpSyGrEKs1NwltIWYyYJ5yvw9ebszjgLW536BEeXu2ChDxHmzkFt9ZzLcXSpg3qy8CVM2cGNjkM4sAnqeR76AuVQEOiGoZ9zb2DKwXQ67dc5hnZw4zk48XpI7uIw1-Dj_u5984ieXx-eNrfPyDDRZORlSyTlsvIVcVRw4r3l1OjWcGK9peXxxrpWMtYKbwQjglUV41xza7WTnq3B1eJbcr93LmW1Dbs4lUhFKRGiaghmhSILZWJIKTqv5tiPOv4ogtW-U7V0qkqnat-pqouGLppU2OnTxT_n_0W_KeR6VA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Morcos, Noura</creator><creator>Sayah, Toni</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</title><author>Morcos, Noura ; Sayah, Toni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morcos, Noura</creatorcontrib><creatorcontrib>Sayah, Toni</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morcos, Noura</au><au>Sayah, Toni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>93</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we consider a stochastic elliptic partial differential system and we aim to approximate the solution using the Monte Carlo method based on the finite elements method. To speed up the resolution and reduce the CPU time of computation, we propose to couple the reduced basis method with the adapted mesh method based on an a posteriori error estimate. Balancing the discretization and the Monte Carlo errors is very important to avoid performing an excessive number of iterations. Numerical experiments show and confirm the efficiency of our proposed algorithm.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-019-0859-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2019-06, Vol.38 (2), p.1-16, Article 93 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2215569103 |
source | Springer Nature |
subjects | Algorithms Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Monte Carlo simulation |
title | Reduced basis method for the adapted mesh and Monte Carlo methods applied to an elliptic stochastic problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20basis%20method%20for%20the%20adapted%20mesh%20and%20Monte%20Carlo%20methods%20applied%20to%20an%20elliptic%20stochastic%20problem&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Morcos,%20Noura&rft.date=2019-06-01&rft.volume=38&rft.issue=2&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=93&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-019-0859-8&rft_dat=%3Cproquest_cross%3E2215569103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f7b172476f61e2541ffd42cabc41dfd27149deb733b5fc5315366344a4ddae7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215569103&rft_id=info:pmid/&rfr_iscdi=true |