Loading…
Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal
[Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of...
Saved in:
Published in: | Journal of materials processing technology 2019-07, Vol.269, p.35-44 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73 |
container_end_page | 44 |
container_issue | |
container_start_page | 35 |
container_title | Journal of materials processing technology |
container_volume | 269 |
creator | Xia, Yueqing Dong, Honggang Hao, Xiaohu Li, Peng Li, Shuai |
description | [Display omitted]
The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr). |
doi_str_mv | 10.1016/j.jmatprotec.2019.01.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216273059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013619300275</els_id><sourcerecordid>2216273059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</originalsourceid><addsrcrecordid>eNqFkMFO4zAQhi0EEoXlHSxxThjbiZ0cSwUsUqW9sL1ajjMGR05d7AQJnp5UXYnjnmYO3_-P5iOEMigZMHk3lMNopkOKE9qSA2tLYCVwOCMr1ihRVEpV52QFLa8KYEJekqucBwCmoGlWpNsZO88j7ZL58vtXGh198XIdqh01IcRPOkUqmNzSPBm_D5jzsiEGOucjbha62MxFZzL21IwxHd7inKnzIWCiI04m_CIXzoSMN__mNfn7-PCy-V1s_zw9b9bbwopKTkUHbQt152Tb2dr1ruLIpKuFaQ2ra4bSguwYb1QtsUXRWwSnwHSiqY3iqMQ1uT31LjLeZ8yTHuKc9stJzTmTXAmo24VqTpRNMeeETh-SH0361Az00age9I9RfTSqgenF6BK9P0Vx-eLDY9LZetxb7H1CO-k--v-XfAM_wYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216273059</pqid></control><display><type>article</type><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</creator><creatorcontrib>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</creatorcontrib><description>[Display omitted]
The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2019.01.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Brazed joints ; Brazing alloys ; Chromium ; Copper ; Crack propagation ; Cracks ; Filler metals ; Interfacial microstructure ; Iron ; Mechanical properties ; Mechanical property ; Microstructure ; Nickel ; Shear strength ; Shear tests ; Solidification ; Stainless steel ; Stress concentration ; Substrates ; Ti-Cu-based amorphous filler metal ; Titanium alloys ; Titanium base alloys ; Vacuum brazing</subject><ispartof>Journal of materials processing technology, 2019-07, Vol.269, p.35-44</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</citedby><cites>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Yueqing</creatorcontrib><creatorcontrib>Dong, Honggang</creatorcontrib><creatorcontrib>Hao, Xiaohu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><title>Journal of materials processing technology</title><description>[Display omitted]
The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</description><subject>Austenitic stainless steels</subject><subject>Brazed joints</subject><subject>Brazing alloys</subject><subject>Chromium</subject><subject>Copper</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Filler metals</subject><subject>Interfacial microstructure</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Solidification</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Substrates</subject><subject>Ti-Cu-based amorphous filler metal</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum brazing</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO4zAQhi0EEoXlHSxxThjbiZ0cSwUsUqW9sL1ajjMGR05d7AQJnp5UXYnjnmYO3_-P5iOEMigZMHk3lMNopkOKE9qSA2tLYCVwOCMr1ihRVEpV52QFLa8KYEJekqucBwCmoGlWpNsZO88j7ZL58vtXGh198XIdqh01IcRPOkUqmNzSPBm_D5jzsiEGOucjbha62MxFZzL21IwxHd7inKnzIWCiI04m_CIXzoSMN__mNfn7-PCy-V1s_zw9b9bbwopKTkUHbQt152Tb2dr1ruLIpKuFaQ2ra4bSguwYb1QtsUXRWwSnwHSiqY3iqMQ1uT31LjLeZ8yTHuKc9stJzTmTXAmo24VqTpRNMeeETh-SH0361Az00age9I9RfTSqgenF6BK9P0Vx-eLDY9LZetxb7H1CO-k--v-XfAM_wYPg</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Xia, Yueqing</creator><creator>Dong, Honggang</creator><creator>Hao, Xiaohu</creator><creator>Li, Peng</creator><creator>Li, Shuai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201907</creationdate><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><author>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Brazed joints</topic><topic>Brazing alloys</topic><topic>Chromium</topic><topic>Copper</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Filler metals</topic><topic>Interfacial microstructure</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Solidification</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Substrates</topic><topic>Ti-Cu-based amorphous filler metal</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum brazing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yueqing</creatorcontrib><creatorcontrib>Dong, Honggang</creatorcontrib><creatorcontrib>Hao, Xiaohu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yueqing</au><au>Dong, Honggang</au><au>Hao, Xiaohu</au><au>Li, Peng</au><au>Li, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-07</date><risdate>2019</risdate><volume>269</volume><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>[Display omitted]
The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2019.01.020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2019-07, Vol.269, p.35-44 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_proquest_journals_2216273059 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Austenitic stainless steels Brazed joints Brazing alloys Chromium Copper Crack propagation Cracks Filler metals Interfacial microstructure Iron Mechanical properties Mechanical property Microstructure Nickel Shear strength Shear tests Solidification Stainless steel Stress concentration Substrates Ti-Cu-based amorphous filler metal Titanium alloys Titanium base alloys Vacuum brazing |
title | Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum%20brazing%20of%20Ti6Al4V%20alloy%20to%20316L%20stainless%20steel%20using%20a%20Ti-Cu-based%20amorphous%20filler%20metal&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Xia,%20Yueqing&rft.date=2019-07&rft.volume=269&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2019.01.020&rft_dat=%3Cproquest_cross%3E2216273059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216273059&rft_id=info:pmid/&rfr_iscdi=true |