Loading…

Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal

[Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2019-07, Vol.269, p.35-44
Main Authors: Xia, Yueqing, Dong, Honggang, Hao, Xiaohu, Li, Peng, Li, Shuai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73
cites cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73
container_end_page 44
container_issue
container_start_page 35
container_title Journal of materials processing technology
container_volume 269
creator Xia, Yueqing
Dong, Honggang
Hao, Xiaohu
Li, Peng
Li, Shuai
description [Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).
doi_str_mv 10.1016/j.jmatprotec.2019.01.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216273059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013619300275</els_id><sourcerecordid>2216273059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</originalsourceid><addsrcrecordid>eNqFkMFO4zAQhi0EEoXlHSxxThjbiZ0cSwUsUqW9sL1ajjMGR05d7AQJnp5UXYnjnmYO3_-P5iOEMigZMHk3lMNopkOKE9qSA2tLYCVwOCMr1ihRVEpV52QFLa8KYEJekqucBwCmoGlWpNsZO88j7ZL58vtXGh198XIdqh01IcRPOkUqmNzSPBm_D5jzsiEGOucjbha62MxFZzL21IwxHd7inKnzIWCiI04m_CIXzoSMN__mNfn7-PCy-V1s_zw9b9bbwopKTkUHbQt152Tb2dr1ruLIpKuFaQ2ra4bSguwYb1QtsUXRWwSnwHSiqY3iqMQ1uT31LjLeZ8yTHuKc9stJzTmTXAmo24VqTpRNMeeETh-SH0361Az00age9I9RfTSqgenF6BK9P0Vx-eLDY9LZetxb7H1CO-k--v-XfAM_wYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216273059</pqid></control><display><type>article</type><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</creator><creatorcontrib>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</creatorcontrib><description>[Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2019.01.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steels ; Brazed joints ; Brazing alloys ; Chromium ; Copper ; Crack propagation ; Cracks ; Filler metals ; Interfacial microstructure ; Iron ; Mechanical properties ; Mechanical property ; Microstructure ; Nickel ; Shear strength ; Shear tests ; Solidification ; Stainless steel ; Stress concentration ; Substrates ; Ti-Cu-based amorphous filler metal ; Titanium alloys ; Titanium base alloys ; Vacuum brazing</subject><ispartof>Journal of materials processing technology, 2019-07, Vol.269, p.35-44</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</citedby><cites>FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Yueqing</creatorcontrib><creatorcontrib>Dong, Honggang</creatorcontrib><creatorcontrib>Hao, Xiaohu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><title>Journal of materials processing technology</title><description>[Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</description><subject>Austenitic stainless steels</subject><subject>Brazed joints</subject><subject>Brazing alloys</subject><subject>Chromium</subject><subject>Copper</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Filler metals</subject><subject>Interfacial microstructure</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Solidification</subject><subject>Stainless steel</subject><subject>Stress concentration</subject><subject>Substrates</subject><subject>Ti-Cu-based amorphous filler metal</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Vacuum brazing</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO4zAQhi0EEoXlHSxxThjbiZ0cSwUsUqW9sL1ajjMGR05d7AQJnp5UXYnjnmYO3_-P5iOEMigZMHk3lMNopkOKE9qSA2tLYCVwOCMr1ihRVEpV52QFLa8KYEJekqucBwCmoGlWpNsZO88j7ZL58vtXGh198XIdqh01IcRPOkUqmNzSPBm_D5jzsiEGOucjbha62MxFZzL21IwxHd7inKnzIWCiI04m_CIXzoSMN__mNfn7-PCy-V1s_zw9b9bbwopKTkUHbQt152Tb2dr1ruLIpKuFaQ2ra4bSguwYb1QtsUXRWwSnwHSiqY3iqMQ1uT31LjLeZ8yTHuKc9stJzTmTXAmo24VqTpRNMeeETh-SH0361Az00age9I9RfTSqgenF6BK9P0Vx-eLDY9LZetxb7H1CO-k--v-XfAM_wYPg</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Xia, Yueqing</creator><creator>Dong, Honggang</creator><creator>Hao, Xiaohu</creator><creator>Li, Peng</creator><creator>Li, Shuai</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201907</creationdate><title>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</title><author>Xia, Yueqing ; Dong, Honggang ; Hao, Xiaohu ; Li, Peng ; Li, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Brazed joints</topic><topic>Brazing alloys</topic><topic>Chromium</topic><topic>Copper</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Filler metals</topic><topic>Interfacial microstructure</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Solidification</topic><topic>Stainless steel</topic><topic>Stress concentration</topic><topic>Substrates</topic><topic>Ti-Cu-based amorphous filler metal</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Vacuum brazing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yueqing</creatorcontrib><creatorcontrib>Dong, Honggang</creatorcontrib><creatorcontrib>Hao, Xiaohu</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yueqing</au><au>Dong, Honggang</au><au>Hao, Xiaohu</au><au>Li, Peng</au><au>Li, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal</atitle><jtitle>Journal of materials processing technology</jtitle><date>2019-07</date><risdate>2019</risdate><volume>269</volume><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>[Display omitted] The effect of brazing parameters on the interfacial microstructure and mechanical properties of Ti6Al4V titanium alloy/316 L stainless steel brazed joint was investigated. The joint presented sectionalized interfacial microstructure by forming four reaction zones. The diffusion of Cu and Fe into Ti6Al4V titanium alloy substrate caused β-Ti transformation and its dissolution. Raising the brazing temperature promoted the dissolved blocky β-Ti to migrate to 316 L stainless steel side. Compared to the brazing temperature, the brazing time had relatively less impact on the microstructure of joint. The diffusion of Ti into steel substrate led to the formation of the transition zone which contained three different reaction layers-Fe2Ti, τ + α-(Fe, Cr), and γ-(Fe, Ni) + σ. With the increase of brazing temperature, the transition zone gradually thickened. The optimized joint shear strength was 65 MPa obtained at 960 °C/5 min. Contraction difference between two base metals generated stress concentration at Ti-Cu-Fe/Fe2Ti interface, which was a liquid/solid interface upon solidification. During shear test, cracks initiated at the Ti-Cu-Fe/Fe2Ti interface, and then mainly propagated within the reaction layers of Fe2Ti and τ + α-(Fe, Cr).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2019.01.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2019-07, Vol.269, p.35-44
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2216273059
source ScienceDirect Freedom Collection 2022-2024
subjects Austenitic stainless steels
Brazed joints
Brazing alloys
Chromium
Copper
Crack propagation
Cracks
Filler metals
Interfacial microstructure
Iron
Mechanical properties
Mechanical property
Microstructure
Nickel
Shear strength
Shear tests
Solidification
Stainless steel
Stress concentration
Substrates
Ti-Cu-based amorphous filler metal
Titanium alloys
Titanium base alloys
Vacuum brazing
title Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuum%20brazing%20of%20Ti6Al4V%20alloy%20to%20316L%20stainless%20steel%20using%20a%20Ti-Cu-based%20amorphous%20filler%20metal&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Xia,%20Yueqing&rft.date=2019-07&rft.volume=269&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2019.01.020&rft_dat=%3Cproquest_cross%3E2216273059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-b09905bf69bc5fdf42e16f53a9a1551e6c06b128756e9e3dce0f70ab385a72e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216273059&rft_id=info:pmid/&rfr_iscdi=true