Loading…

Redox behaviour of a ceria–zirconia inverse model catalyst

•ZrO2-x(111) and CeO2-x(111) form a phase-separated structure when prepared at 1200 K. •ZrO2-x(111) undergoes photo-induced reduction when exposed to soft x-rays. •Reduction of ZrO2-x(111) is prevented by the addition of CeO2-x(111) indicating a synergy. The redox behaviour modification following th...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 2019-04, Vol.682, p.8-13
Main Authors: Allan, Michael, Grinter, David, Dhaliwal, Simran, Muryn, Chris, Forrest, Thomas, Maccherozzi, Francesco, Dhesi, Sarnjeet S., Thornton, Geoff
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93
cites cdi_FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93
container_end_page 13
container_issue
container_start_page 8
container_title Surface science
container_volume 682
creator Allan, Michael
Grinter, David
Dhaliwal, Simran
Muryn, Chris
Forrest, Thomas
Maccherozzi, Francesco
Dhesi, Sarnjeet S.
Thornton, Geoff
description •ZrO2-x(111) and CeO2-x(111) form a phase-separated structure when prepared at 1200 K. •ZrO2-x(111) undergoes photo-induced reduction when exposed to soft x-rays. •Reduction of ZrO2-x(111) is prevented by the addition of CeO2-x(111) indicating a synergy. The redox behaviour modification following the addition of zirconia to ceria nanostructures supported on Rh(111) has been investigated using a combination of Low Energy Electron Diffraction (LEED) and X-ray Photoemission Electron Microscopy (XPEEM). Soft X-ray irradiation was employed to reduce ZrO2-x(111) supported on Rh(111) and, by introducing oxygen, the reoxidation process of the thin film was monitored. Ceria was then depositied with zirconia. Using XPEEM, we determined that the mixed metal oxide formed a phase-separated structure with CeO2(111) nanoparticles on top of the zirconia. Upon exposure of CeO2-x/ZrO2-x/Rh(111) to X-ray illumination, the zirconia no longer undergoes any observable reduction while at the same time the ceria is reduced. Our results indicate a synergy between the zirconia and ceria in the phase-separated system expected in the working catalyst, with oxygen transfer between the metal oxides. This sheds light on the mechanism of the enhancement of catalytic properties seen with the addition of zirconia to ceria and highlights the oxygen storage and release ability of ceria. [Display omitted]
doi_str_mv 10.1016/j.susc.2018.12.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216273136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602818309038</els_id><sourcerecordid>2216273136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrA9Yy5SSeTQDdS_IOCILoOmeQOZmibmkyLdeU7-IY-iSl17d2cxT3n3sNHyCXQCiiI675Km2QrRkFWwCpK6yMyAtmokjW1PCYjSrkqBWXylJyl1NM8E1WPyPQZXfgoWnwzWx82sQhdYQqL0Zufr-9PH21YeVP41RZjwmIZHC4Kawaz2KXhnJx0ZpHw4k_H5PXu9mX2UM6f7h9nN_PS8oYNpWmomwCtAV0HhlOmLFMoZFszKjsn8wIbwS2q1rGJcNJycAaEkrVpeaf4mFwd7q5jeN9gGnSfq67yS80YCNZw4CK72MFlY0gpYqfX0S9N3Gmgek9J93pPSe8paWA6U8qh6SGEuf_WY9TJelxZdD6iHbQL_r_4L4G3cPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216273136</pqid></control><display><type>article</type><title>Redox behaviour of a ceria–zirconia inverse model catalyst</title><source>Elsevier</source><creator>Allan, Michael ; Grinter, David ; Dhaliwal, Simran ; Muryn, Chris ; Forrest, Thomas ; Maccherozzi, Francesco ; Dhesi, Sarnjeet S. ; Thornton, Geoff</creator><creatorcontrib>Allan, Michael ; Grinter, David ; Dhaliwal, Simran ; Muryn, Chris ; Forrest, Thomas ; Maccherozzi, Francesco ; Dhesi, Sarnjeet S. ; Thornton, Geoff</creatorcontrib><description>•ZrO2-x(111) and CeO2-x(111) form a phase-separated structure when prepared at 1200 K. •ZrO2-x(111) undergoes photo-induced reduction when exposed to soft x-rays. •Reduction of ZrO2-x(111) is prevented by the addition of CeO2-x(111) indicating a synergy. The redox behaviour modification following the addition of zirconia to ceria nanostructures supported on Rh(111) has been investigated using a combination of Low Energy Electron Diffraction (LEED) and X-ray Photoemission Electron Microscopy (XPEEM). Soft X-ray irradiation was employed to reduce ZrO2-x(111) supported on Rh(111) and, by introducing oxygen, the reoxidation process of the thin film was monitored. Ceria was then depositied with zirconia. Using XPEEM, we determined that the mixed metal oxide formed a phase-separated structure with CeO2(111) nanoparticles on top of the zirconia. Upon exposure of CeO2-x/ZrO2-x/Rh(111) to X-ray illumination, the zirconia no longer undergoes any observable reduction while at the same time the ceria is reduced. Our results indicate a synergy between the zirconia and ceria in the phase-separated system expected in the working catalyst, with oxygen transfer between the metal oxides. This sheds light on the mechanism of the enhancement of catalytic properties seen with the addition of zirconia to ceria and highlights the oxygen storage and release ability of ceria. [Display omitted]</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2018.12.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Ceria–zirconia ; Cerium oxides ; Light ; Low energy electron diffraction ; Metal oxides ; Nanoparticles ; Oxygen transfer ; Photoelectric emission ; Redox ; Rhodium ; Soft x rays ; Thin films ; X ray irradiation ; X-ray photoelectron microscopy ; Zirconium dioxide</subject><ispartof>Surface science, 2019-04, Vol.682, p.8-13</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93</citedby><cites>FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Allan, Michael</creatorcontrib><creatorcontrib>Grinter, David</creatorcontrib><creatorcontrib>Dhaliwal, Simran</creatorcontrib><creatorcontrib>Muryn, Chris</creatorcontrib><creatorcontrib>Forrest, Thomas</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Dhesi, Sarnjeet S.</creatorcontrib><creatorcontrib>Thornton, Geoff</creatorcontrib><title>Redox behaviour of a ceria–zirconia inverse model catalyst</title><title>Surface science</title><description>•ZrO2-x(111) and CeO2-x(111) form a phase-separated structure when prepared at 1200 K. •ZrO2-x(111) undergoes photo-induced reduction when exposed to soft x-rays. •Reduction of ZrO2-x(111) is prevented by the addition of CeO2-x(111) indicating a synergy. The redox behaviour modification following the addition of zirconia to ceria nanostructures supported on Rh(111) has been investigated using a combination of Low Energy Electron Diffraction (LEED) and X-ray Photoemission Electron Microscopy (XPEEM). Soft X-ray irradiation was employed to reduce ZrO2-x(111) supported on Rh(111) and, by introducing oxygen, the reoxidation process of the thin film was monitored. Ceria was then depositied with zirconia. Using XPEEM, we determined that the mixed metal oxide formed a phase-separated structure with CeO2(111) nanoparticles on top of the zirconia. Upon exposure of CeO2-x/ZrO2-x/Rh(111) to X-ray illumination, the zirconia no longer undergoes any observable reduction while at the same time the ceria is reduced. Our results indicate a synergy between the zirconia and ceria in the phase-separated system expected in the working catalyst, with oxygen transfer between the metal oxides. This sheds light on the mechanism of the enhancement of catalytic properties seen with the addition of zirconia to ceria and highlights the oxygen storage and release ability of ceria. [Display omitted]</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Ceria–zirconia</subject><subject>Cerium oxides</subject><subject>Light</subject><subject>Low energy electron diffraction</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Oxygen transfer</subject><subject>Photoelectric emission</subject><subject>Redox</subject><subject>Rhodium</subject><subject>Soft x rays</subject><subject>Thin films</subject><subject>X ray irradiation</subject><subject>X-ray photoelectron microscopy</subject><subject>Zirconium dioxide</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrA9Yy5SSeTQDdS_IOCILoOmeQOZmibmkyLdeU7-IY-iSl17d2cxT3n3sNHyCXQCiiI675Km2QrRkFWwCpK6yMyAtmokjW1PCYjSrkqBWXylJyl1NM8E1WPyPQZXfgoWnwzWx82sQhdYQqL0Zufr-9PH21YeVP41RZjwmIZHC4Kawaz2KXhnJx0ZpHw4k_H5PXu9mX2UM6f7h9nN_PS8oYNpWmomwCtAV0HhlOmLFMoZFszKjsn8wIbwS2q1rGJcNJycAaEkrVpeaf4mFwd7q5jeN9gGnSfq67yS80YCNZw4CK72MFlY0gpYqfX0S9N3Gmgek9J93pPSe8paWA6U8qh6SGEuf_WY9TJelxZdD6iHbQL_r_4L4G3cPU</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Allan, Michael</creator><creator>Grinter, David</creator><creator>Dhaliwal, Simran</creator><creator>Muryn, Chris</creator><creator>Forrest, Thomas</creator><creator>Maccherozzi, Francesco</creator><creator>Dhesi, Sarnjeet S.</creator><creator>Thornton, Geoff</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201904</creationdate><title>Redox behaviour of a ceria–zirconia inverse model catalyst</title><author>Allan, Michael ; Grinter, David ; Dhaliwal, Simran ; Muryn, Chris ; Forrest, Thomas ; Maccherozzi, Francesco ; Dhesi, Sarnjeet S. ; Thornton, Geoff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Ceria–zirconia</topic><topic>Cerium oxides</topic><topic>Light</topic><topic>Low energy electron diffraction</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Oxygen transfer</topic><topic>Photoelectric emission</topic><topic>Redox</topic><topic>Rhodium</topic><topic>Soft x rays</topic><topic>Thin films</topic><topic>X ray irradiation</topic><topic>X-ray photoelectron microscopy</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allan, Michael</creatorcontrib><creatorcontrib>Grinter, David</creatorcontrib><creatorcontrib>Dhaliwal, Simran</creatorcontrib><creatorcontrib>Muryn, Chris</creatorcontrib><creatorcontrib>Forrest, Thomas</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Dhesi, Sarnjeet S.</creatorcontrib><creatorcontrib>Thornton, Geoff</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allan, Michael</au><au>Grinter, David</au><au>Dhaliwal, Simran</au><au>Muryn, Chris</au><au>Forrest, Thomas</au><au>Maccherozzi, Francesco</au><au>Dhesi, Sarnjeet S.</au><au>Thornton, Geoff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox behaviour of a ceria–zirconia inverse model catalyst</atitle><jtitle>Surface science</jtitle><date>2019-04</date><risdate>2019</risdate><volume>682</volume><spage>8</spage><epage>13</epage><pages>8-13</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>•ZrO2-x(111) and CeO2-x(111) form a phase-separated structure when prepared at 1200 K. •ZrO2-x(111) undergoes photo-induced reduction when exposed to soft x-rays. •Reduction of ZrO2-x(111) is prevented by the addition of CeO2-x(111) indicating a synergy. The redox behaviour modification following the addition of zirconia to ceria nanostructures supported on Rh(111) has been investigated using a combination of Low Energy Electron Diffraction (LEED) and X-ray Photoemission Electron Microscopy (XPEEM). Soft X-ray irradiation was employed to reduce ZrO2-x(111) supported on Rh(111) and, by introducing oxygen, the reoxidation process of the thin film was monitored. Ceria was then depositied with zirconia. Using XPEEM, we determined that the mixed metal oxide formed a phase-separated structure with CeO2(111) nanoparticles on top of the zirconia. Upon exposure of CeO2-x/ZrO2-x/Rh(111) to X-ray illumination, the zirconia no longer undergoes any observable reduction while at the same time the ceria is reduced. Our results indicate a synergy between the zirconia and ceria in the phase-separated system expected in the working catalyst, with oxygen transfer between the metal oxides. This sheds light on the mechanism of the enhancement of catalytic properties seen with the addition of zirconia to ceria and highlights the oxygen storage and release ability of ceria. [Display omitted]</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2018.12.005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2019-04, Vol.682, p.8-13
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_journals_2216273136
source Elsevier
subjects Catalysis
Catalysts
Ceria–zirconia
Cerium oxides
Light
Low energy electron diffraction
Metal oxides
Nanoparticles
Oxygen transfer
Photoelectric emission
Redox
Rhodium
Soft x rays
Thin films
X ray irradiation
X-ray photoelectron microscopy
Zirconium dioxide
title Redox behaviour of a ceria–zirconia inverse model catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20behaviour%20of%20a%20ceria%E2%80%93zirconia%20inverse%20model%20catalyst&rft.jtitle=Surface%20science&rft.au=Allan,%20Michael&rft.date=2019-04&rft.volume=682&rft.spage=8&rft.epage=13&rft.pages=8-13&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/j.susc.2018.12.005&rft_dat=%3Cproquest_cross%3E2216273136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-a70d41051edf1a3029c29e68b5208fd851ee763ce9bd246d8c31da16985ab3f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216273136&rft_id=info:pmid/&rfr_iscdi=true