Loading…

Mechanical characterization of as-cast AA7075/6060 and CuSn6/Cu99.5 compounds using an experimental and numerical push-out test

The present paper describes an experimental method and innovative numerical approach in the mechanical testing of rotationally symmetric, as-cast bilayer compounds using a push-out test. Specimens consisting of AA7075/6060 and CuSn6/Cu99.5 were fabricated by static and semi-continuous compound casti...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-03, Vol.751, p.214-225
Main Authors: Greß, Thomas, Stahl, Jens, Mittler, Tim, Spano, Lukas, Chen, Hui, Ben Khalifa, Noomane, Volk, Wolfram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper describes an experimental method and innovative numerical approach in the mechanical testing of rotationally symmetric, as-cast bilayer compounds using a push-out test. Specimens consisting of AA7075/6060 and CuSn6/Cu99.5 were fabricated by static and semi-continuous compound casting, respectively. Optical and mechanical testing methods showed a cohesive bonding character and a negligibly small transition zone between the joining partners. The shear strength was investigated by using an experimental push-out test. The experiments were reviewed by means of a finite element analysis. Therefore, Johnson-Cock failure parameters were determined for each casting material. Subsequently, a multi-sectional numerical model was built up to simulate the mechanical behavior of an as-cast bimetal sample during push-out testing. Lastly, a numerical parameter study yielded a strong dependency between optimized loads at the interface and the ratio of die clearance and sample thickness as well as the interface position.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2019.02.080