Loading…

Study on Flow Characteristics in Volute of Centrifugal Pump Based on Dynamic Mode Decomposition

To investigate the unsteady flow characteristics and their influence mechanism in the volute of centrifugal pump, the Reynolds time-averaged N-S equation, RNG k-ε turbulence model, and structured grid technique are used to numerically analyze the transient flow-field characteristics inside the centr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-15
Main Authors: Li, Yi-bin, Li, Jian-zhong, He, Chang-hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the unsteady flow characteristics and their influence mechanism in the volute of centrifugal pump, the Reynolds time-averaged N-S equation, RNG k-ε turbulence model, and structured grid technique are used to numerically analyze the transient flow-field characteristics inside the centrifugal pump volute. Based on the quantified parameters of flow field in the volute of centrifugal pump, the velocity mode contours and oscillation characteristics of the mid-span section of the volute of centrifugal pump are obtained by dynamic mode decomposition (DMD) for the nominal and low flow-rate condition. The research shows that the first-order average flow mode extracted by DMD is the dominant flow structure in the flow field of the volute. The second-order and third-order modes are the most important oscillation modes causing unsteady flow in the volute, and the characteristic frequency of the two modes is consistent with the blade passing frequency and the 2x blade passing frequency obtained by the fast Fourier transform (FFT). By reconstructing the internal flow field of the volute with the blade passing frequency for the nominal flow-rate condition, the periodic variation of the unsteady flow structure in the volute under this frequency is visually reproduced, which provides some ideas for the study of the unsteady structure in the internal flow field of centrifugal pumps.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/2567659