Loading…

An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application

•FZO nanostructures were treated with 8 MeV e-beam line at dosages 0 to 20 kGy.•XPS conveys that e-beam treatment suppresses the generation of defects in FZO.•Non radiative recombination dominates over radiative recombinations in FZO.•Nonlinear scattering mechanism becomes dominant due to photo blea...

Full description

Saved in:
Bibliographic Details
Published in:Optics and laser technology 2019-07, Vol.115, p.519-530
Main Authors: Antony, Albin, Poornesh, P., Ozga, K., Rakus, P., Wojciechowski, A., Kityk, I.V., Sanjeev, Ganesh, Petwal, Vikash Chandra, Verma, Vijay Pal, Dwivedi, Jishnu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633
cites cdi_FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633
container_end_page 530
container_issue
container_start_page 519
container_title Optics and laser technology
container_volume 115
creator Antony, Albin
Poornesh, P.
Ozga, K.
Rakus, P.
Wojciechowski, A.
Kityk, I.V.
Sanjeev, Ganesh
Petwal, Vikash Chandra
Verma, Vijay Pal
Dwivedi, Jishnu
description •FZO nanostructures were treated with 8 MeV e-beam line at dosages 0 to 20 kGy.•XPS conveys that e-beam treatment suppresses the generation of defects in FZO.•Non radiative recombination dominates over radiative recombinations in FZO.•Nonlinear scattering mechanism becomes dominant due to photo bleaching effect. Influence of high energy electron beam treatment on fluorine doped ZnO (FZO) nanostructures and its role in modifying structural, optical, morphological and nonlinear optical properties was studied. FZO nanostructures were grown with different fluorine concentration using an air assisted chemical spray pyrolysis technique. The prepared nanostructures were treated with 8 MeV electron beam line at pre-determined dosages (5 kGy. 10 kGy, 15 kGy and 20 kGy). Compositional and chemical state analysis of FZO films were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS analysis conveys that the percentage area ratio of O1s core level spectra which attributes to oxygen vacancy defects are reduced from 28.9% to 13.7% which endorses a fact that e-beam treatment suppresses the generation of oxygen related defects. The glancing angle X-ray diffraction (GAXRD) study confirms that the deposited films exhibit a single phase which point towards the higher order structural stability and phase purity of FZO nanostructures in intense radiation environment. The ambient temperature PL spectra show quenching of radiative defect centers upon electron beam irradiation which infers that non radiative recombination predominates the radiative recombination in the nanostructures upon e-beam treatment. Open aperture Z-scan analysis shows a magnitude of nonlinear absorption coefficient βeff in the order of 10−1 esu. Enhanced third harmonic generation signal (THG) shown by the films due to photoexcitation and relaxation process endorses the credibility of the grown films for application as UV light emitters.
doi_str_mv 10.1016/j.optlastec.2019.03.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216907537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399218321492</els_id><sourcerecordid>2216907537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZu0v6GCnO2OJVteHZclTQqBXNpLL0KWx0XGkVxJDuylvz2zbMi1p_l65-th7GsDdQON-jbXcS2LzQVdLaDRNcgaQH5gu2bf60p0bXfFdpSBSmotPrHrnGcAaFUnd-zfIXBc0JUUAx_QPnMfxs3hyHPZxhNFfFq2mHxAPsaV8r_DEw82xFzS5sqWMPMpJk5HeGcXPvmlIMn_cBtGPiX8u2FwJ-5ieMGUPa2x67qQtpD_mX2c7JLxy5u9Yb--3_08PlSPT_c_jofHyslWlmovet0NctJKObG3SgyAKC22uh8GRA0KnFJtO0A3WAttq5AKjegmq_daSXnDbi9z1xTpoFzMHLcUaKURolEa-k72pOovKpdizgknsyb_bNPJNGDOsM1s3mGbM2wD0hBa6jxcOpGeePGYTHae_sbRJ4Jrxuj_O-MV8rKPnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216907537</pqid></control><display><type>article</type><title>An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application</title><source>ScienceDirect Freedom Collection</source><creator>Antony, Albin ; Poornesh, P. ; Ozga, K. ; Rakus, P. ; Wojciechowski, A. ; Kityk, I.V. ; Sanjeev, Ganesh ; Petwal, Vikash Chandra ; Verma, Vijay Pal ; Dwivedi, Jishnu</creator><creatorcontrib>Antony, Albin ; Poornesh, P. ; Ozga, K. ; Rakus, P. ; Wojciechowski, A. ; Kityk, I.V. ; Sanjeev, Ganesh ; Petwal, Vikash Chandra ; Verma, Vijay Pal ; Dwivedi, Jishnu</creatorcontrib><description>•FZO nanostructures were treated with 8 MeV e-beam line at dosages 0 to 20 kGy.•XPS conveys that e-beam treatment suppresses the generation of defects in FZO.•Non radiative recombination dominates over radiative recombinations in FZO.•Nonlinear scattering mechanism becomes dominant due to photo bleaching effect. Influence of high energy electron beam treatment on fluorine doped ZnO (FZO) nanostructures and its role in modifying structural, optical, morphological and nonlinear optical properties was studied. FZO nanostructures were grown with different fluorine concentration using an air assisted chemical spray pyrolysis technique. The prepared nanostructures were treated with 8 MeV electron beam line at pre-determined dosages (5 kGy. 10 kGy, 15 kGy and 20 kGy). Compositional and chemical state analysis of FZO films were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS analysis conveys that the percentage area ratio of O1s core level spectra which attributes to oxygen vacancy defects are reduced from 28.9% to 13.7% which endorses a fact that e-beam treatment suppresses the generation of oxygen related defects. The glancing angle X-ray diffraction (GAXRD) study confirms that the deposited films exhibit a single phase which point towards the higher order structural stability and phase purity of FZO nanostructures in intense radiation environment. The ambient temperature PL spectra show quenching of radiative defect centers upon electron beam irradiation which infers that non radiative recombination predominates the radiative recombination in the nanostructures upon e-beam treatment. Open aperture Z-scan analysis shows a magnitude of nonlinear absorption coefficient βeff in the order of 10−1 esu. Enhanced third harmonic generation signal (THG) shown by the films due to photoexcitation and relaxation process endorses the credibility of the grown films for application as UV light emitters.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2019.03.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Absorptivity ; Ambient temperature ; Apertures ; Defects ; Electron beam irradiation ; Electron beam processing ; Electron irradiation ; Emitters ; Emitters (electron) ; Fluorine ; FZO nanostructures ; Harmonic generations ; High energy electrons ; Nanostructure ; Optical properties ; Organic chemistry ; Photoelectrons ; Photoexcitation ; Radiative recombination ; Signal generation ; Signal processing ; Spectrum analysis ; Spray pyrolysis ; Structural stability ; Third harmonic generation ; Ultraviolet radiation ; X ray photoelectron spectroscopy ; X-ray diffraction ; Zinc oxide</subject><ispartof>Optics and laser technology, 2019-07, Vol.115, p.519-530</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633</citedby><cites>FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Antony, Albin</creatorcontrib><creatorcontrib>Poornesh, P.</creatorcontrib><creatorcontrib>Ozga, K.</creatorcontrib><creatorcontrib>Rakus, P.</creatorcontrib><creatorcontrib>Wojciechowski, A.</creatorcontrib><creatorcontrib>Kityk, I.V.</creatorcontrib><creatorcontrib>Sanjeev, Ganesh</creatorcontrib><creatorcontrib>Petwal, Vikash Chandra</creatorcontrib><creatorcontrib>Verma, Vijay Pal</creatorcontrib><creatorcontrib>Dwivedi, Jishnu</creatorcontrib><title>An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application</title><title>Optics and laser technology</title><description>•FZO nanostructures were treated with 8 MeV e-beam line at dosages 0 to 20 kGy.•XPS conveys that e-beam treatment suppresses the generation of defects in FZO.•Non radiative recombination dominates over radiative recombinations in FZO.•Nonlinear scattering mechanism becomes dominant due to photo bleaching effect. Influence of high energy electron beam treatment on fluorine doped ZnO (FZO) nanostructures and its role in modifying structural, optical, morphological and nonlinear optical properties was studied. FZO nanostructures were grown with different fluorine concentration using an air assisted chemical spray pyrolysis technique. The prepared nanostructures were treated with 8 MeV electron beam line at pre-determined dosages (5 kGy. 10 kGy, 15 kGy and 20 kGy). Compositional and chemical state analysis of FZO films were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS analysis conveys that the percentage area ratio of O1s core level spectra which attributes to oxygen vacancy defects are reduced from 28.9% to 13.7% which endorses a fact that e-beam treatment suppresses the generation of oxygen related defects. The glancing angle X-ray diffraction (GAXRD) study confirms that the deposited films exhibit a single phase which point towards the higher order structural stability and phase purity of FZO nanostructures in intense radiation environment. The ambient temperature PL spectra show quenching of radiative defect centers upon electron beam irradiation which infers that non radiative recombination predominates the radiative recombination in the nanostructures upon e-beam treatment. Open aperture Z-scan analysis shows a magnitude of nonlinear absorption coefficient βeff in the order of 10−1 esu. Enhanced third harmonic generation signal (THG) shown by the films due to photoexcitation and relaxation process endorses the credibility of the grown films for application as UV light emitters.</description><subject>Absorptivity</subject><subject>Ambient temperature</subject><subject>Apertures</subject><subject>Defects</subject><subject>Electron beam irradiation</subject><subject>Electron beam processing</subject><subject>Electron irradiation</subject><subject>Emitters</subject><subject>Emitters (electron)</subject><subject>Fluorine</subject><subject>FZO nanostructures</subject><subject>Harmonic generations</subject><subject>High energy electrons</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Photoexcitation</subject><subject>Radiative recombination</subject><subject>Signal generation</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Spray pyrolysis</subject><subject>Structural stability</subject><subject>Third harmonic generation</subject><subject>Ultraviolet radiation</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZu0v6GCnO2OJVteHZclTQqBXNpLL0KWx0XGkVxJDuylvz2zbMi1p_l65-th7GsDdQON-jbXcS2LzQVdLaDRNcgaQH5gu2bf60p0bXfFdpSBSmotPrHrnGcAaFUnd-zfIXBc0JUUAx_QPnMfxs3hyHPZxhNFfFq2mHxAPsaV8r_DEw82xFzS5sqWMPMpJk5HeGcXPvmlIMn_cBtGPiX8u2FwJ-5ieMGUPa2x67qQtpD_mX2c7JLxy5u9Yb--3_08PlSPT_c_jofHyslWlmovet0NctJKObG3SgyAKC22uh8GRA0KnFJtO0A3WAttq5AKjegmq_daSXnDbi9z1xTpoFzMHLcUaKURolEa-k72pOovKpdizgknsyb_bNPJNGDOsM1s3mGbM2wD0hBa6jxcOpGeePGYTHae_sbRJ4Jrxuj_O-MV8rKPnQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Antony, Albin</creator><creator>Poornesh, P.</creator><creator>Ozga, K.</creator><creator>Rakus, P.</creator><creator>Wojciechowski, A.</creator><creator>Kityk, I.V.</creator><creator>Sanjeev, Ganesh</creator><creator>Petwal, Vikash Chandra</creator><creator>Verma, Vijay Pal</creator><creator>Dwivedi, Jishnu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201907</creationdate><title>An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application</title><author>Antony, Albin ; Poornesh, P. ; Ozga, K. ; Rakus, P. ; Wojciechowski, A. ; Kityk, I.V. ; Sanjeev, Ganesh ; Petwal, Vikash Chandra ; Verma, Vijay Pal ; Dwivedi, Jishnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorptivity</topic><topic>Ambient temperature</topic><topic>Apertures</topic><topic>Defects</topic><topic>Electron beam irradiation</topic><topic>Electron beam processing</topic><topic>Electron irradiation</topic><topic>Emitters</topic><topic>Emitters (electron)</topic><topic>Fluorine</topic><topic>FZO nanostructures</topic><topic>Harmonic generations</topic><topic>High energy electrons</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Photoexcitation</topic><topic>Radiative recombination</topic><topic>Signal generation</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Spray pyrolysis</topic><topic>Structural stability</topic><topic>Third harmonic generation</topic><topic>Ultraviolet radiation</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antony, Albin</creatorcontrib><creatorcontrib>Poornesh, P.</creatorcontrib><creatorcontrib>Ozga, K.</creatorcontrib><creatorcontrib>Rakus, P.</creatorcontrib><creatorcontrib>Wojciechowski, A.</creatorcontrib><creatorcontrib>Kityk, I.V.</creatorcontrib><creatorcontrib>Sanjeev, Ganesh</creatorcontrib><creatorcontrib>Petwal, Vikash Chandra</creatorcontrib><creatorcontrib>Verma, Vijay Pal</creatorcontrib><creatorcontrib>Dwivedi, Jishnu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antony, Albin</au><au>Poornesh, P.</au><au>Ozga, K.</au><au>Rakus, P.</au><au>Wojciechowski, A.</au><au>Kityk, I.V.</au><au>Sanjeev, Ganesh</au><au>Petwal, Vikash Chandra</au><au>Verma, Vijay Pal</au><au>Dwivedi, Jishnu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application</atitle><jtitle>Optics and laser technology</jtitle><date>2019-07</date><risdate>2019</risdate><volume>115</volume><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•FZO nanostructures were treated with 8 MeV e-beam line at dosages 0 to 20 kGy.•XPS conveys that e-beam treatment suppresses the generation of defects in FZO.•Non radiative recombination dominates over radiative recombinations in FZO.•Nonlinear scattering mechanism becomes dominant due to photo bleaching effect. Influence of high energy electron beam treatment on fluorine doped ZnO (FZO) nanostructures and its role in modifying structural, optical, morphological and nonlinear optical properties was studied. FZO nanostructures were grown with different fluorine concentration using an air assisted chemical spray pyrolysis technique. The prepared nanostructures were treated with 8 MeV electron beam line at pre-determined dosages (5 kGy. 10 kGy, 15 kGy and 20 kGy). Compositional and chemical state analysis of FZO films were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS analysis conveys that the percentage area ratio of O1s core level spectra which attributes to oxygen vacancy defects are reduced from 28.9% to 13.7% which endorses a fact that e-beam treatment suppresses the generation of oxygen related defects. The glancing angle X-ray diffraction (GAXRD) study confirms that the deposited films exhibit a single phase which point towards the higher order structural stability and phase purity of FZO nanostructures in intense radiation environment. The ambient temperature PL spectra show quenching of radiative defect centers upon electron beam irradiation which infers that non radiative recombination predominates the radiative recombination in the nanostructures upon e-beam treatment. Open aperture Z-scan analysis shows a magnitude of nonlinear absorption coefficient βeff in the order of 10−1 esu. Enhanced third harmonic generation signal (THG) shown by the films due to photoexcitation and relaxation process endorses the credibility of the grown films for application as UV light emitters.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2019.03.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3992
ispartof Optics and laser technology, 2019-07, Vol.115, p.519-530
issn 0030-3992
1879-2545
language eng
recordid cdi_proquest_journals_2216907537
source ScienceDirect Freedom Collection
subjects Absorptivity
Ambient temperature
Apertures
Defects
Electron beam irradiation
Electron beam processing
Electron irradiation
Emitters
Emitters (electron)
Fluorine
FZO nanostructures
Harmonic generations
High energy electrons
Nanostructure
Optical properties
Organic chemistry
Photoelectrons
Photoexcitation
Radiative recombination
Signal generation
Signal processing
Spectrum analysis
Spray pyrolysis
Structural stability
Third harmonic generation
Ultraviolet radiation
X ray photoelectron spectroscopy
X-ray diffraction
Zinc oxide
title An electron beam induced study in fluorine doped ZnO nanostructures for optical filtering and frequency conversion application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20electron%20beam%20induced%20study%20in%20fluorine%20doped%20ZnO%20nanostructures%20for%20optical%20filtering%20and%20frequency%20conversion%20application&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Antony,%20Albin&rft.date=2019-07&rft.volume=115&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2019.03.003&rft_dat=%3Cproquest_cross%3E2216907537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-82795b3f966c28a62b0ee3ae497bbee9060c6644b05baa0446e7bb125fa989633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216907537&rft_id=info:pmid/&rfr_iscdi=true