Loading…

Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC

The performance of identification algorithms ("taggers") for hadronically decaying top quarks and W bosons in pp collisions at [Formula omitted] = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studi...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2019-04, Vol.79 (5), p.1-54
Main Authors: Aaboud, M, Aad, G, Abbott, B, Abdinov, O, Abeloos, B, Abhayasinghe, D. K, Abidi, S. H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 54
container_issue 5
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 79
creator Aaboud, M
Aad, G
Abbott, B
Abdinov, O
Abeloos, B
Abhayasinghe, D. K
Abidi, S. H
description The performance of identification algorithms ("taggers") for hadronically decaying top quarks and W bosons in pp collisions at [Formula omitted] = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb [Formula omitted] for the [Formula omitted] and [Formula omitted] and 36.7 fb [Formula omitted] for the dijet event topologies.
doi_str_mv 10.1140/epjc/s10052-019-6847-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2216937734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A584130978</galeid><sourcerecordid>A584130978</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1014-402e98fa69dcbfe6419dadf62f96c7070f587ce026cd3844fcf890aae174b7af3</originalsourceid><addsrcrecordid>eNpVjc1KAzEUhYMoWKuvIAFXLtImM2l-lkNRWxhQ2roqUtJMMp3aJu0kgz6-wYood3Ev537nHABuCR4QQvHQHLZ6GAjGowxhIhETlCNxBnqE5hSxJJ__3pRegqsQthjjjGLRA8sX01rf7pXTBnoLoz-gY6fad6hcBZeP6dXtFPT7JkZTvaG1D97BqOq6cTX8aOIGFouymMPGwVnnYPYdsjGwnIyvwYVVu2BufnYfvD4-LMYTVD4_TcdFiWqCCUUUZ0YKq5is9NoaRomsVGVZZiXTHHNsR4JrgzOmq1xQarUVEitlCKdrrmzeB3en3EPrj50JcbX1XetS5SrLCJM55zlN1OBE1WpnVo2zPrZKp6nMvtHeGdskvRgJSnIsuUiG-3-GxETzGWvVhbCazmd_2S-6fXNT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216937734</pqid></control><display><type>article</type><title>Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Aaboud, M ; Aad, G ; Abbott, B ; Abdinov, O ; Abeloos, B ; Abhayasinghe, D. K ; Abidi, S. H</creator><creatorcontrib>Aaboud, M ; Aad, G ; Abbott, B ; Abdinov, O ; Abeloos, B ; Abhayasinghe, D. K ; Abidi, S. H</creatorcontrib><description>The performance of identification algorithms ("taggers") for hadronically decaying top quarks and W bosons in pp collisions at [Formula omitted] = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb [Formula omitted] for the [Formula omitted] and [Formula omitted] and 36.7 fb [Formula omitted] for the dijet event topologies.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-019-6847-8</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Artificial neural networks ; Bosons ; Decision trees ; Deconstruction ; Large Hadron Collider ; Marking ; Neural networks ; Optimization ; Quarks ; Substructures ; Topology</subject><ispartof>The European physical journal. C, Particles and fields, 2019-04, Vol.79 (5), p.1-54</ispartof><rights>COPYRIGHT 2019 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2216937734/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2216937734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Aaboud, M</creatorcontrib><creatorcontrib>Aad, G</creatorcontrib><creatorcontrib>Abbott, B</creatorcontrib><creatorcontrib>Abdinov, O</creatorcontrib><creatorcontrib>Abeloos, B</creatorcontrib><creatorcontrib>Abhayasinghe, D. K</creatorcontrib><creatorcontrib>Abidi, S. H</creatorcontrib><title>Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC</title><title>The European physical journal. C, Particles and fields</title><description>The performance of identification algorithms ("taggers") for hadronically decaying top quarks and W bosons in pp collisions at [Formula omitted] = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb [Formula omitted] for the [Formula omitted] and [Formula omitted] and 36.7 fb [Formula omitted] for the dijet event topologies.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bosons</subject><subject>Decision trees</subject><subject>Deconstruction</subject><subject>Large Hadron Collider</subject><subject>Marking</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Quarks</subject><subject>Substructures</subject><subject>Topology</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVjc1KAzEUhYMoWKuvIAFXLtImM2l-lkNRWxhQ2roqUtJMMp3aJu0kgz6-wYood3Ev537nHABuCR4QQvHQHLZ6GAjGowxhIhETlCNxBnqE5hSxJJ__3pRegqsQthjjjGLRA8sX01rf7pXTBnoLoz-gY6fad6hcBZeP6dXtFPT7JkZTvaG1D97BqOq6cTX8aOIGFouymMPGwVnnYPYdsjGwnIyvwYVVu2BufnYfvD4-LMYTVD4_TcdFiWqCCUUUZ0YKq5is9NoaRomsVGVZZiXTHHNsR4JrgzOmq1xQarUVEitlCKdrrmzeB3en3EPrj50JcbX1XetS5SrLCJM55zlN1OBE1WpnVo2zPrZKp6nMvtHeGdskvRgJSnIsuUiG-3-GxETzGWvVhbCazmd_2S-6fXNT</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Aaboud, M</creator><creator>Aad, G</creator><creator>Abbott, B</creator><creator>Abdinov, O</creator><creator>Abeloos, B</creator><creator>Abhayasinghe, D. K</creator><creator>Abidi, S. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190430</creationdate><title>Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC</title><author>Aaboud, M ; Aad, G ; Abbott, B ; Abdinov, O ; Abeloos, B ; Abhayasinghe, D. K ; Abidi, S. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1014-402e98fa69dcbfe6419dadf62f96c7070f587ce026cd3844fcf890aae174b7af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bosons</topic><topic>Decision trees</topic><topic>Deconstruction</topic><topic>Large Hadron Collider</topic><topic>Marking</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Quarks</topic><topic>Substructures</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aaboud, M</creatorcontrib><creatorcontrib>Aad, G</creatorcontrib><creatorcontrib>Abbott, B</creatorcontrib><creatorcontrib>Abdinov, O</creatorcontrib><creatorcontrib>Abeloos, B</creatorcontrib><creatorcontrib>Abhayasinghe, D. K</creatorcontrib><creatorcontrib>Abidi, S. H</creatorcontrib><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aaboud, M</au><au>Aad, G</au><au>Abbott, B</au><au>Abdinov, O</au><au>Abeloos, B</au><au>Abhayasinghe, D. K</au><au>Abidi, S. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2019-04-30</date><risdate>2019</risdate><volume>79</volume><issue>5</issue><spage>1</spage><epage>54</epage><pages>1-54</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>The performance of identification algorithms ("taggers") for hadronically decaying top quarks and W bosons in pp collisions at [Formula omitted] = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb [Formula omitted] for the [Formula omitted] and [Formula omitted] and 36.7 fb [Formula omitted] for the dijet event topologies.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1140/epjc/s10052-019-6847-8</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2019-04, Vol.79 (5), p.1-54
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_2216937734
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Artificial neural networks
Bosons
Decision trees
Deconstruction
Large Hadron Collider
Marking
Neural networks
Optimization
Quarks
Substructures
Topology
title Performance of top-quark and [Formula omitted]-boson tagging with ATLAS in Run 2 of the LHC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20top-quark%20and%20%5BFormula%20omitted%5D-boson%20tagging%20with%20ATLAS%20in%20Run%202%20of%20the%20LHC&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Aaboud,%20M&rft.date=2019-04-30&rft.volume=79&rft.issue=5&rft.spage=1&rft.epage=54&rft.pages=1-54&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-019-6847-8&rft_dat=%3Cgale_proqu%3EA584130978%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1014-402e98fa69dcbfe6419dadf62f96c7070f587ce026cd3844fcf890aae174b7af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2216937734&rft_id=info:pmid/&rft_galeid=A584130978&rfr_iscdi=true