Loading…

Role of nitric oxide in tumour progression with special reference to a murine breast cancer model

Nitric oxide (NO) is a potent bioactive molecule produced in the presence of NO synthase (NOS) enzymes, which mediates numerous physiological functions under constitutive conditions. Sustained overproduction of NO (and NO-reaction products), typically under inductive conditions, can lead to cell cyc...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of physiology and pharmacology 2002-02, Vol.80 (2), p.125-135
Main Authors: Jadeski, Lorraine C, Chakraborty, Chandan, Lala, Peeyush K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nitric oxide (NO) is a potent bioactive molecule produced in the presence of NO synthase (NOS) enzymes, which mediates numerous physiological functions under constitutive conditions. Sustained overproduction of NO (and NO-reaction products), typically under inductive conditions, can lead to cell cycle arrest and cellular apoptosis. Furthermore, carcinogenesis may result from mutational events following NO-mediated DNA damage and hindrance to DNA repair (e.g., mutation of tumour-suppressor gene p53). In a majority of human and experimental tumours, tumour-derived NO appears to stimulate tumour progression; however, for a minority of tumours, the opposite has been reported. This apparent discrepancy may be explained by differential susceptibility of tumour cells to NO-mediated cytostasis or apoptosis, and the emergence of NO-resistant and NO-dependent clones. NO-resistance may be mediated by p53 inactivation, and upregulation of cyclo-oxygenase-2 and heat shock protein 70 (HSP70). In a murine mammary tumour model, tumour-derived NO promoted tumour growth and metastasis by enhancing invasive, angiogenic, and migratory capacities of tumour cells. Invasion stimulation followed the altered balance of matrix metalloproteases and their inhibitors; migration stimulation followed activation of guanylate cyclase and MAP kinase pathways. Selective NOS inhibitors may have a therapeutic role in certain cancers.Key words: nitric oxide, carcinogenesis, invasion, metastasis, angiogenesis.
ISSN:0008-4212
1205-7541
DOI:10.1139/y02-007