Loading…

Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

ABSTRACT In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating‐bed plasma‐enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) ele...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2019-08, Vol.136 (31), p.n/a
Main Authors: Gürsoy, Mehmet, Özcan, Fatih, Karaman, Mustafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating‐bed plasma‐enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) electrospun polymer fiber mats and composite fiber mats with CNTs and functionalized CNTs (f‐CNTs) were prepared. The wettability and chemical and morphological properties of the synthesized fiber mats were investigated, and the dispersion of CNTs and f‐CNTs in the polymer matrix was compared according to the contact angle results of electrospun polymer mats. According to the chemical and morphological characterization results, PHFBA‐coated CNTs were dispersed more uniformly in the polymer matrix than the uncoated CNTs. The f‐CNTs/PAN composite fiber mat exhibits a lower surface energy than the pristine CNTs/PAN fiber mat. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47768.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.47768