Loading…

Numerical analysis of radial and angular stratification in turbulent swirling flames

In this work, a numerical approach is used to investigate the effects of level and type of stratification on turbulent methane-air stratified combustion. Two different scenarios are followed to create stratified conditions. In the first scenario, the Cambridge-Sandia flames which involve inhomogenei...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2019-04, Vol.173, p.523-539
Main Authors: Sahebjamei, M., Amani, E., Nobari, M.R.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3
cites cdi_FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3
container_end_page 539
container_issue
container_start_page 523
container_title Energy (Oxford)
container_volume 173
creator Sahebjamei, M.
Amani, E.
Nobari, M.R.H.
description In this work, a numerical approach is used to investigate the effects of level and type of stratification on turbulent methane-air stratified combustion. Two different scenarios are followed to create stratified conditions. In the first scenario, the Cambridge-Sandia flames which involve inhomogeneity in the radial direction are investigated. In the second scenario, a modification is applied to the inlet of the reference burner to study the effect of adding small- and large-scale non-homogeneities in the angular direction in addition to the radial one. The impacts of radial/angular stratified combustion on various flow fields such as velocity, temperature, H2, CO, and OH mass fractions are scrutinized. More importantly, the effects of radial/angular stratification on a series of global objective parameters, including combustion efficiency, maximum flame temperature, NO formation, CO and UHC emissions, entropy generation, and pattern factor at the outlet of the combustor are examined. It is manifested that adding a moderate level of small-scale angular stratification to the radial one would be beneficial in terms of combustion efficiency (42% increase with respect to the homogeneously premixed case) and pattern factor at the outlet of a combustor. •The effect of radial/angular stratification on flow field and performance parameters are studied.•The combustion efficiency improves by 42% imposing a combined radial-angular stratified condition.•Pattern factor is better in case of the combined stratification compared to purely radial stratified one.•Maximum flame temperature rises with the presence of angular stratification but is independent of its level.•Small-scale/large-scale angular stratification increases/decreases NO emission at the outlet.
doi_str_mv 10.1016/j.energy.2019.02.112
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218958871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219303123</els_id><sourcerecordid>2218958871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYuA69Y8-kg3ggy-YNDNuA437c2Q0mnHJFXm35txXLu4HLicc-B8hNxwlnPGq7s-xxH9Zp8LxpuciZxzcUIWXNUyq2pVnpIFkxXLyqIQ5-QihJ4xVqqmWZD127xF71oYKIww7IMLdLLUQ-d-X126zTyApyF6iM4ma3TTSN1I4-zNPOAYafh2fnDjhtoBthiuyJmFIeD1n16Sj6fH9fIlW70_vy4fVlkrZREzY0pQqrFNqZhlxnYgwRrByxo7tIwXxqiSARjDZQ2ARkouW1lURhmsOysvye2xd-enzxlD1P00-zQjaCG4Sr2q5slVHF2tn0LwaPXOuy34veZMH_jpXh_56QM_zYRO_FLs_hjDtODLodehdTi22DmPbdTd5P4v-AFXFX10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218958871</pqid></control><display><type>article</type><title>Numerical analysis of radial and angular stratification in turbulent swirling flames</title><source>ScienceDirect Freedom Collection</source><creator>Sahebjamei, M. ; Amani, E. ; Nobari, M.R.H.</creator><creatorcontrib>Sahebjamei, M. ; Amani, E. ; Nobari, M.R.H.</creatorcontrib><description>In this work, a numerical approach is used to investigate the effects of level and type of stratification on turbulent methane-air stratified combustion. Two different scenarios are followed to create stratified conditions. In the first scenario, the Cambridge-Sandia flames which involve inhomogeneity in the radial direction are investigated. In the second scenario, a modification is applied to the inlet of the reference burner to study the effect of adding small- and large-scale non-homogeneities in the angular direction in addition to the radial one. The impacts of radial/angular stratified combustion on various flow fields such as velocity, temperature, H2, CO, and OH mass fractions are scrutinized. More importantly, the effects of radial/angular stratification on a series of global objective parameters, including combustion efficiency, maximum flame temperature, NO formation, CO and UHC emissions, entropy generation, and pattern factor at the outlet of the combustor are examined. It is manifested that adding a moderate level of small-scale angular stratification to the radial one would be beneficial in terms of combustion efficiency (42% increase with respect to the homogeneously premixed case) and pattern factor at the outlet of a combustor. •The effect of radial/angular stratification on flow field and performance parameters are studied.•The combustion efficiency improves by 42% imposing a combined radial-angular stratified condition.•Pattern factor is better in case of the combined stratification compared to purely radial stratified one.•Maximum flame temperature rises with the presence of angular stratification but is independent of its level.•Small-scale/large-scale angular stratification increases/decreases NO emission at the outlet.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.02.112</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerodynamics ; Angular stratification ; Angular velocity ; Cambridge-Sandia stratified swirl burner ; Combustion ; Combustion chambers ; Combustion efficiency ; Computational fluid dynamics ; Emission ; Entropy ; Flame temperature ; Inhomogeneity ; Numerical analysis ; Stratification ; Stratified combustion ; Swirling</subject><ispartof>Energy (Oxford), 2019-04, Vol.173, p.523-539</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3</citedby><cites>FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sahebjamei, M.</creatorcontrib><creatorcontrib>Amani, E.</creatorcontrib><creatorcontrib>Nobari, M.R.H.</creatorcontrib><title>Numerical analysis of radial and angular stratification in turbulent swirling flames</title><title>Energy (Oxford)</title><description>In this work, a numerical approach is used to investigate the effects of level and type of stratification on turbulent methane-air stratified combustion. Two different scenarios are followed to create stratified conditions. In the first scenario, the Cambridge-Sandia flames which involve inhomogeneity in the radial direction are investigated. In the second scenario, a modification is applied to the inlet of the reference burner to study the effect of adding small- and large-scale non-homogeneities in the angular direction in addition to the radial one. The impacts of radial/angular stratified combustion on various flow fields such as velocity, temperature, H2, CO, and OH mass fractions are scrutinized. More importantly, the effects of radial/angular stratification on a series of global objective parameters, including combustion efficiency, maximum flame temperature, NO formation, CO and UHC emissions, entropy generation, and pattern factor at the outlet of the combustor are examined. It is manifested that adding a moderate level of small-scale angular stratification to the radial one would be beneficial in terms of combustion efficiency (42% increase with respect to the homogeneously premixed case) and pattern factor at the outlet of a combustor. •The effect of radial/angular stratification on flow field and performance parameters are studied.•The combustion efficiency improves by 42% imposing a combined radial-angular stratified condition.•Pattern factor is better in case of the combined stratification compared to purely radial stratified one.•Maximum flame temperature rises with the presence of angular stratification but is independent of its level.•Small-scale/large-scale angular stratification increases/decreases NO emission at the outlet.</description><subject>Aerodynamics</subject><subject>Angular stratification</subject><subject>Angular velocity</subject><subject>Cambridge-Sandia stratified swirl burner</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Combustion efficiency</subject><subject>Computational fluid dynamics</subject><subject>Emission</subject><subject>Entropy</subject><subject>Flame temperature</subject><subject>Inhomogeneity</subject><subject>Numerical analysis</subject><subject>Stratification</subject><subject>Stratified combustion</subject><subject>Swirling</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYuA69Y8-kg3ggy-YNDNuA437c2Q0mnHJFXm35txXLu4HLicc-B8hNxwlnPGq7s-xxH9Zp8LxpuciZxzcUIWXNUyq2pVnpIFkxXLyqIQ5-QihJ4xVqqmWZD127xF71oYKIww7IMLdLLUQ-d-X126zTyApyF6iM4ma3TTSN1I4-zNPOAYafh2fnDjhtoBthiuyJmFIeD1n16Sj6fH9fIlW70_vy4fVlkrZREzY0pQqrFNqZhlxnYgwRrByxo7tIwXxqiSARjDZQ2ARkouW1lURhmsOysvye2xd-enzxlD1P00-zQjaCG4Sr2q5slVHF2tn0LwaPXOuy34veZMH_jpXh_56QM_zYRO_FLs_hjDtODLodehdTi22DmPbdTd5P4v-AFXFX10</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Sahebjamei, M.</creator><creator>Amani, E.</creator><creator>Nobari, M.R.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190415</creationdate><title>Numerical analysis of radial and angular stratification in turbulent swirling flames</title><author>Sahebjamei, M. ; Amani, E. ; Nobari, M.R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Angular stratification</topic><topic>Angular velocity</topic><topic>Cambridge-Sandia stratified swirl burner</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Combustion efficiency</topic><topic>Computational fluid dynamics</topic><topic>Emission</topic><topic>Entropy</topic><topic>Flame temperature</topic><topic>Inhomogeneity</topic><topic>Numerical analysis</topic><topic>Stratification</topic><topic>Stratified combustion</topic><topic>Swirling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahebjamei, M.</creatorcontrib><creatorcontrib>Amani, E.</creatorcontrib><creatorcontrib>Nobari, M.R.H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahebjamei, M.</au><au>Amani, E.</au><au>Nobari, M.R.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of radial and angular stratification in turbulent swirling flames</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>173</volume><spage>523</spage><epage>539</epage><pages>523-539</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this work, a numerical approach is used to investigate the effects of level and type of stratification on turbulent methane-air stratified combustion. Two different scenarios are followed to create stratified conditions. In the first scenario, the Cambridge-Sandia flames which involve inhomogeneity in the radial direction are investigated. In the second scenario, a modification is applied to the inlet of the reference burner to study the effect of adding small- and large-scale non-homogeneities in the angular direction in addition to the radial one. The impacts of radial/angular stratified combustion on various flow fields such as velocity, temperature, H2, CO, and OH mass fractions are scrutinized. More importantly, the effects of radial/angular stratification on a series of global objective parameters, including combustion efficiency, maximum flame temperature, NO formation, CO and UHC emissions, entropy generation, and pattern factor at the outlet of the combustor are examined. It is manifested that adding a moderate level of small-scale angular stratification to the radial one would be beneficial in terms of combustion efficiency (42% increase with respect to the homogeneously premixed case) and pattern factor at the outlet of a combustor. •The effect of radial/angular stratification on flow field and performance parameters are studied.•The combustion efficiency improves by 42% imposing a combined radial-angular stratified condition.•Pattern factor is better in case of the combined stratification compared to purely radial stratified one.•Maximum flame temperature rises with the presence of angular stratification but is independent of its level.•Small-scale/large-scale angular stratification increases/decreases NO emission at the outlet.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.02.112</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-04, Vol.173, p.523-539
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2218958871
source ScienceDirect Freedom Collection
subjects Aerodynamics
Angular stratification
Angular velocity
Cambridge-Sandia stratified swirl burner
Combustion
Combustion chambers
Combustion efficiency
Computational fluid dynamics
Emission
Entropy
Flame temperature
Inhomogeneity
Numerical analysis
Stratification
Stratified combustion
Swirling
title Numerical analysis of radial and angular stratification in turbulent swirling flames
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20radial%20and%20angular%20stratification%20in%20turbulent%20swirling%20flames&rft.jtitle=Energy%20(Oxford)&rft.au=Sahebjamei,%20M.&rft.date=2019-04-15&rft.volume=173&rft.spage=523&rft.epage=539&rft.pages=523-539&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.02.112&rft_dat=%3Cproquest_cross%3E2218958871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-bb5a889f9580f0bfda3afb2157edef014bb850aabb137aaeb3313c346b8be7df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2218958871&rft_id=info:pmid/&rfr_iscdi=true