Loading…
Self-Diffusion in a Spatially Modulated System of Electrons on Helium
We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the...
Saved in:
Published in: | Journal of low temperature physics 2019-05, Vol.195 (3-4), p.266-288 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3 |
container_end_page | 288 |
container_issue | 3-4 |
container_start_page | 266 |
container_title | Journal of low temperature physics |
container_volume | 195 |
creator | Moskovtsev, K. Dykman, M. I. |
description | We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential. |
doi_str_mv | 10.1007/s10909-019-02148-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219061225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219061225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AU8kntEByrIcTa3WpMZDeyd0AbMNXSrsHtqnF10Tbx4mM4fv_yf5ELqlcE8B5EOmoEARoGUYndXkdIYmVEhOJBfyHE0AGCOMKXqJrnLeAYCqKz5Bi7ULnjy13g-5jR1uO2zw-mD61oRwxG_RDsH0zuL1Mfduj6PHi-CaPsUu48IvXWiH_TW68CZkd_O7p2jzvNjMl2T1_vI6f1yRhlPVE-4sAyuUld5Q67bKW1YJ7jywWcVpxWWtGpDcA2VbBeC5q-qmHEJwIRyforux9pDi5-Byr3dxSF35qBmjCirKmCgUG6kmxZyT8_qQ2r1JR01Bf9vSoy1dbOkfW_pUQnwM5QJ3Hy79Vf-T-gJL3WwR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219061225</pqid></control><display><type>article</type><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><source>Springer Link</source><creator>Moskovtsev, K. ; Dykman, M. I.</creator><creatorcontrib>Moskovtsev, K. ; Dykman, M. I.</creatorcontrib><description>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02148-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Capillary waves ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Coupling (molecular) ; Diffusion coefficient ; Free electrons ; Freezing ; Liquid helium ; Low temperature physics ; Magnetic Materials ; Magnetism ; Molecular dynamics ; Physics ; Physics and Astronomy ; Self diffusion ; Solid phases ; Solitary waves</subject><ispartof>Journal of low temperature physics, 2019-05, Vol.195 (3-4), p.266-288</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</citedby><cites>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</cites><orcidid>0000-0003-3996-7932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moskovtsev, K.</creatorcontrib><creatorcontrib>Dykman, M. I.</creatorcontrib><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</description><subject>Boundary conditions</subject><subject>Capillary waves</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Coupling (molecular)</subject><subject>Diffusion coefficient</subject><subject>Free electrons</subject><subject>Freezing</subject><subject>Liquid helium</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Self diffusion</subject><subject>Solid phases</subject><subject>Solitary waves</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AU8kntEByrIcTa3WpMZDeyd0AbMNXSrsHtqnF10Tbx4mM4fv_yf5ELqlcE8B5EOmoEARoGUYndXkdIYmVEhOJBfyHE0AGCOMKXqJrnLeAYCqKz5Bi7ULnjy13g-5jR1uO2zw-mD61oRwxG_RDsH0zuL1Mfduj6PHi-CaPsUu48IvXWiH_TW68CZkd_O7p2jzvNjMl2T1_vI6f1yRhlPVE-4sAyuUld5Q67bKW1YJ7jywWcVpxWWtGpDcA2VbBeC5q-qmHEJwIRyforux9pDi5-Byr3dxSF35qBmjCirKmCgUG6kmxZyT8_qQ2r1JR01Bf9vSoy1dbOkfW_pUQnwM5QJ3Hy79Vf-T-gJL3WwR</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Moskovtsev, K.</creator><creator>Dykman, M. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3996-7932</orcidid></search><sort><creationdate>20190515</creationdate><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><author>Moskovtsev, K. ; Dykman, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Capillary waves</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Coupling (molecular)</topic><topic>Diffusion coefficient</topic><topic>Free electrons</topic><topic>Freezing</topic><topic>Liquid helium</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Self diffusion</topic><topic>Solid phases</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskovtsev, K.</creatorcontrib><creatorcontrib>Dykman, M. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskovtsev, K.</au><au>Dykman, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>195</volume><issue>3-4</issue><spage>266</spage><epage>288</epage><pages>266-288</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02148-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3996-7932</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2019-05, Vol.195 (3-4), p.266-288 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_proquest_journals_2219061225 |
source | Springer Link |
subjects | Boundary conditions Capillary waves Characterization and Evaluation of Materials Condensed Matter Physics Coupling (molecular) Diffusion coefficient Free electrons Freezing Liquid helium Low temperature physics Magnetic Materials Magnetism Molecular dynamics Physics Physics and Astronomy Self diffusion Solid phases Solitary waves |
title | Self-Diffusion in a Spatially Modulated System of Electrons on Helium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Diffusion%20in%20a%20Spatially%20Modulated%20System%20of%20Electrons%20on%20Helium&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Moskovtsev,%20K.&rft.date=2019-05-15&rft.volume=195&rft.issue=3-4&rft.spage=266&rft.epage=288&rft.pages=266-288&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02148-z&rft_dat=%3Cproquest_cross%3E2219061225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219061225&rft_id=info:pmid/&rfr_iscdi=true |