Loading…

Self-Diffusion in a Spatially Modulated System of Electrons on Helium

We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of low temperature physics 2019-05, Vol.195 (3-4), p.266-288
Main Authors: Moskovtsev, K., Dykman, M. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3
cites cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3
container_end_page 288
container_issue 3-4
container_start_page 266
container_title Journal of low temperature physics
container_volume 195
creator Moskovtsev, K.
Dykman, M. I.
description We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.
doi_str_mv 10.1007/s10909-019-02148-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219061225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219061225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AU8kntEByrIcTa3WpMZDeyd0AbMNXSrsHtqnF10Tbx4mM4fv_yf5ELqlcE8B5EOmoEARoGUYndXkdIYmVEhOJBfyHE0AGCOMKXqJrnLeAYCqKz5Bi7ULnjy13g-5jR1uO2zw-mD61oRwxG_RDsH0zuL1Mfduj6PHi-CaPsUu48IvXWiH_TW68CZkd_O7p2jzvNjMl2T1_vI6f1yRhlPVE-4sAyuUld5Q67bKW1YJ7jywWcVpxWWtGpDcA2VbBeC5q-qmHEJwIRyforux9pDi5-Byr3dxSF35qBmjCirKmCgUG6kmxZyT8_qQ2r1JR01Bf9vSoy1dbOkfW_pUQnwM5QJ3Hy79Vf-T-gJL3WwR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219061225</pqid></control><display><type>article</type><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><source>Springer Link</source><creator>Moskovtsev, K. ; Dykman, M. I.</creator><creatorcontrib>Moskovtsev, K. ; Dykman, M. I.</creatorcontrib><description>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-019-02148-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Capillary waves ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Coupling (molecular) ; Diffusion coefficient ; Free electrons ; Freezing ; Liquid helium ; Low temperature physics ; Magnetic Materials ; Magnetism ; Molecular dynamics ; Physics ; Physics and Astronomy ; Self diffusion ; Solid phases ; Solitary waves</subject><ispartof>Journal of low temperature physics, 2019-05, Vol.195 (3-4), p.266-288</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</citedby><cites>FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</cites><orcidid>0000-0003-3996-7932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Moskovtsev, K.</creatorcontrib><creatorcontrib>Dykman, M. I.</creatorcontrib><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</description><subject>Boundary conditions</subject><subject>Capillary waves</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Coupling (molecular)</subject><subject>Diffusion coefficient</subject><subject>Free electrons</subject><subject>Freezing</subject><subject>Liquid helium</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Self diffusion</subject><subject>Solid phases</subject><subject>Solitary waves</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AU8kntEByrIcTa3WpMZDeyd0AbMNXSrsHtqnF10Tbx4mM4fv_yf5ELqlcE8B5EOmoEARoGUYndXkdIYmVEhOJBfyHE0AGCOMKXqJrnLeAYCqKz5Bi7ULnjy13g-5jR1uO2zw-mD61oRwxG_RDsH0zuL1Mfduj6PHi-CaPsUu48IvXWiH_TW68CZkd_O7p2jzvNjMl2T1_vI6f1yRhlPVE-4sAyuUld5Q67bKW1YJ7jywWcVpxWWtGpDcA2VbBeC5q-qmHEJwIRyforux9pDi5-Byr3dxSF35qBmjCirKmCgUG6kmxZyT8_qQ2r1JR01Bf9vSoy1dbOkfW_pUQnwM5QJ3Hy79Vf-T-gJL3WwR</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Moskovtsev, K.</creator><creator>Dykman, M. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3996-7932</orcidid></search><sort><creationdate>20190515</creationdate><title>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</title><author>Moskovtsev, K. ; Dykman, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Capillary waves</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Coupling (molecular)</topic><topic>Diffusion coefficient</topic><topic>Free electrons</topic><topic>Freezing</topic><topic>Liquid helium</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Self diffusion</topic><topic>Solid phases</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskovtsev, K.</creatorcontrib><creatorcontrib>Dykman, M. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskovtsev, K.</au><au>Dykman, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Diffusion in a Spatially Modulated System of Electrons on Helium</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>195</volume><issue>3-4</issue><spage>266</spage><epage>288</epage><pages>266-288</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We present results of molecular dynamics simulations of the electron system on the surface of liquid helium. The simulations are done for 1600 electrons with periodic boundary conditions. Electron scattering by capillary waves and phonons in helium is explicitly taken into account. We find that the self-diffusion coefficient superlinearly decreases with decreasing temperature. In the free-electron system, it turns to zero essentially discontinuously, which we associate with the liquid-to-solid transition. In contrast, when the system is placed in the fully commensurate one-dimensional potential, the freezing of the diffusion occurs smoothly. We relate this change to the fact that, as we show, a Wigner crystal in such a potential is stable, in contrast to systems with a short-range inter-particle coupling. We find that the freezing temperature nonmonotonically depends on the commensurability parameter. We also find incommensurability solitons in the solid phase. The results reveal peculiar features of the dynamics of a strongly correlated system with long-range coupling placed into a periodic potential.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-019-02148-z</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3996-7932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2019-05, Vol.195 (3-4), p.266-288
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2219061225
source Springer Link
subjects Boundary conditions
Capillary waves
Characterization and Evaluation of Materials
Condensed Matter Physics
Coupling (molecular)
Diffusion coefficient
Free electrons
Freezing
Liquid helium
Low temperature physics
Magnetic Materials
Magnetism
Molecular dynamics
Physics
Physics and Astronomy
Self diffusion
Solid phases
Solitary waves
title Self-Diffusion in a Spatially Modulated System of Electrons on Helium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Diffusion%20in%20a%20Spatially%20Modulated%20System%20of%20Electrons%20on%20Helium&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Moskovtsev,%20K.&rft.date=2019-05-15&rft.volume=195&rft.issue=3-4&rft.spage=266&rft.epage=288&rft.pages=266-288&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-019-02148-z&rft_dat=%3Cproquest_cross%3E2219061225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-3ed20d59d7fa1deb9fd2653ef02463163789c073f012b900f3e68c90055355e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219061225&rft_id=info:pmid/&rfr_iscdi=true