Loading…
QPLIB: a library of quadratic programming instances
This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial...
Saved in:
Published in: | Mathematical programming computation 2019-06, Vol.11 (2), p.237-265 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703 |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703 |
container_end_page | 265 |
container_issue | 2 |
container_start_page | 237 |
container_title | Mathematical programming computation |
container_volume | 11 |
creator | Furini, Fabio Traversi, Emiliano Belotti, Pietro Frangioni, Antonio Gleixner, Ambros Gould, Nick Liberti, Leo Lodi, Andrea Misener, Ruth Mittelmann, Hans Sahinidis, Nikolaos V. Vigerske, Stefan Wiegele, Angelika |
description | This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents. |
doi_str_mv | 10.1007/s12532-018-0147-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219061642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219061642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTyWSTeNPiR6Gggp5DupuULe1um2wP_nsjK3pyYJg5vO98PIxdcrjmAOomcZQCS-A6J6mSTtiE60qVaKQ6_e3JnLNZShvIIVBpYSZMvL0uF_e3hSu27Sq6-Fn0oTgcXRPd0NbFPvbr6Ha7tlsXbZcG19U-XbCz4LbJz37qlH08PrzPn8vly9Nifrcsa5JmKLkLtfCNNCtE0ZDXEJwCkg1pLrSR2gcBHoiaGqUh7hXXxlFoUFcICsSUXY1z8xWHo0-D3fTH2OWVFpEbqHhFmFV8VNWxTyn6YPex3eVPLAf7jceOeGzGY7_xWMoeHD0pa7u1j3-T_zd9ATLVZOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219061642</pqid></control><display><type>article</type><title>QPLIB: a library of quadratic programming instances</title><source>Springer Nature</source><creator>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</creator><creatorcontrib>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</creatorcontrib><description>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</description><identifier>ISSN: 1867-2949</identifier><identifier>EISSN: 1867-2957</identifier><identifier>DOI: 10.1007/s12532-018-0147-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Combinatorial analysis ; Full Length Paper ; Libraries ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimization ; Quadratic programming ; Solvers ; Taxonomy ; Theory of Computation</subject><ispartof>Mathematical programming computation, 2019-06, Vol.11 (2), p.237-265</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</citedby><cites>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Furini, Fabio</creatorcontrib><creatorcontrib>Traversi, Emiliano</creatorcontrib><creatorcontrib>Belotti, Pietro</creatorcontrib><creatorcontrib>Frangioni, Antonio</creatorcontrib><creatorcontrib>Gleixner, Ambros</creatorcontrib><creatorcontrib>Gould, Nick</creatorcontrib><creatorcontrib>Liberti, Leo</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Misener, Ruth</creatorcontrib><creatorcontrib>Mittelmann, Hans</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Vigerske, Stefan</creatorcontrib><creatorcontrib>Wiegele, Angelika</creatorcontrib><title>QPLIB: a library of quadratic programming instances</title><title>Mathematical programming computation</title><addtitle>Math. Prog. Comp</addtitle><description>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Full Length Paper</subject><subject>Libraries</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Solvers</subject><subject>Taxonomy</subject><subject>Theory of Computation</subject><issn>1867-2949</issn><issn>1867-2957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTyWSTeNPiR6Gggp5DupuULe1um2wP_nsjK3pyYJg5vO98PIxdcrjmAOomcZQCS-A6J6mSTtiE60qVaKQ6_e3JnLNZShvIIVBpYSZMvL0uF_e3hSu27Sq6-Fn0oTgcXRPd0NbFPvbr6Ha7tlsXbZcG19U-XbCz4LbJz37qlH08PrzPn8vly9Nifrcsa5JmKLkLtfCNNCtE0ZDXEJwCkg1pLrSR2gcBHoiaGqUh7hXXxlFoUFcICsSUXY1z8xWHo0-D3fTH2OWVFpEbqHhFmFV8VNWxTyn6YPex3eVPLAf7jceOeGzGY7_xWMoeHD0pa7u1j3-T_zd9ATLVZOw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Furini, Fabio</creator><creator>Traversi, Emiliano</creator><creator>Belotti, Pietro</creator><creator>Frangioni, Antonio</creator><creator>Gleixner, Ambros</creator><creator>Gould, Nick</creator><creator>Liberti, Leo</creator><creator>Lodi, Andrea</creator><creator>Misener, Ruth</creator><creator>Mittelmann, Hans</creator><creator>Sahinidis, Nikolaos V.</creator><creator>Vigerske, Stefan</creator><creator>Wiegele, Angelika</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>QPLIB: a library of quadratic programming instances</title><author>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Full Length Paper</topic><topic>Libraries</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Solvers</topic><topic>Taxonomy</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furini, Fabio</creatorcontrib><creatorcontrib>Traversi, Emiliano</creatorcontrib><creatorcontrib>Belotti, Pietro</creatorcontrib><creatorcontrib>Frangioni, Antonio</creatorcontrib><creatorcontrib>Gleixner, Ambros</creatorcontrib><creatorcontrib>Gould, Nick</creatorcontrib><creatorcontrib>Liberti, Leo</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Misener, Ruth</creatorcontrib><creatorcontrib>Mittelmann, Hans</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Vigerske, Stefan</creatorcontrib><creatorcontrib>Wiegele, Angelika</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical programming computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furini, Fabio</au><au>Traversi, Emiliano</au><au>Belotti, Pietro</au><au>Frangioni, Antonio</au><au>Gleixner, Ambros</au><au>Gould, Nick</au><au>Liberti, Leo</au><au>Lodi, Andrea</au><au>Misener, Ruth</au><au>Mittelmann, Hans</au><au>Sahinidis, Nikolaos V.</au><au>Vigerske, Stefan</au><au>Wiegele, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QPLIB: a library of quadratic programming instances</atitle><jtitle>Mathematical programming computation</jtitle><stitle>Math. Prog. Comp</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>237</spage><epage>265</epage><pages>237-265</pages><issn>1867-2949</issn><eissn>1867-2957</eissn><abstract>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12532-018-0147-4</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-2949 |
ispartof | Mathematical programming computation, 2019-06, Vol.11 (2), p.237-265 |
issn | 1867-2949 1867-2957 |
language | eng |
recordid | cdi_proquest_journals_2219061642 |
source | Springer Nature |
subjects | Algorithms Combinatorial analysis Full Length Paper Libraries Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Optimization Quadratic programming Solvers Taxonomy Theory of Computation |
title | QPLIB: a library of quadratic programming instances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QPLIB:%20a%20library%20of%20quadratic%20programming%20instances&rft.jtitle=Mathematical%20programming%20computation&rft.au=Furini,%20Fabio&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=237&rft.epage=265&rft.pages=237-265&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007/s12532-018-0147-4&rft_dat=%3Cproquest_cross%3E2219061642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219061642&rft_id=info:pmid/&rfr_iscdi=true |