Loading…

QPLIB: a library of quadratic programming instances

This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming computation 2019-06, Vol.11 (2), p.237-265
Main Authors: Furini, Fabio, Traversi, Emiliano, Belotti, Pietro, Frangioni, Antonio, Gleixner, Ambros, Gould, Nick, Liberti, Leo, Lodi, Andrea, Misener, Ruth, Mittelmann, Hans, Sahinidis, Nikolaos V., Vigerske, Stefan, Wiegele, Angelika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703
cites cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703
container_end_page 265
container_issue 2
container_start_page 237
container_title Mathematical programming computation
container_volume 11
creator Furini, Fabio
Traversi, Emiliano
Belotti, Pietro
Frangioni, Antonio
Gleixner, Ambros
Gould, Nick
Liberti, Leo
Lodi, Andrea
Misener, Ruth
Mittelmann, Hans
Sahinidis, Nikolaos V.
Vigerske, Stefan
Wiegele, Angelika
description This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.
doi_str_mv 10.1007/s12532-018-0147-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219061642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219061642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTyWSTeNPiR6Gggp5DupuULe1um2wP_nsjK3pyYJg5vO98PIxdcrjmAOomcZQCS-A6J6mSTtiE60qVaKQ6_e3JnLNZShvIIVBpYSZMvL0uF_e3hSu27Sq6-Fn0oTgcXRPd0NbFPvbr6Ha7tlsXbZcG19U-XbCz4LbJz37qlH08PrzPn8vly9Nifrcsa5JmKLkLtfCNNCtE0ZDXEJwCkg1pLrSR2gcBHoiaGqUh7hXXxlFoUFcICsSUXY1z8xWHo0-D3fTH2OWVFpEbqHhFmFV8VNWxTyn6YPex3eVPLAf7jceOeGzGY7_xWMoeHD0pa7u1j3-T_zd9ATLVZOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219061642</pqid></control><display><type>article</type><title>QPLIB: a library of quadratic programming instances</title><source>Springer Nature</source><creator>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</creator><creatorcontrib>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</creatorcontrib><description>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</description><identifier>ISSN: 1867-2949</identifier><identifier>EISSN: 1867-2957</identifier><identifier>DOI: 10.1007/s12532-018-0147-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Combinatorial analysis ; Full Length Paper ; Libraries ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Optimization ; Quadratic programming ; Solvers ; Taxonomy ; Theory of Computation</subject><ispartof>Mathematical programming computation, 2019-06, Vol.11 (2), p.237-265</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature and The Mathematical Programming Society 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</citedby><cites>FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Furini, Fabio</creatorcontrib><creatorcontrib>Traversi, Emiliano</creatorcontrib><creatorcontrib>Belotti, Pietro</creatorcontrib><creatorcontrib>Frangioni, Antonio</creatorcontrib><creatorcontrib>Gleixner, Ambros</creatorcontrib><creatorcontrib>Gould, Nick</creatorcontrib><creatorcontrib>Liberti, Leo</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Misener, Ruth</creatorcontrib><creatorcontrib>Mittelmann, Hans</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Vigerske, Stefan</creatorcontrib><creatorcontrib>Wiegele, Angelika</creatorcontrib><title>QPLIB: a library of quadratic programming instances</title><title>Mathematical programming computation</title><addtitle>Math. Prog. Comp</addtitle><description>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Full Length Paper</subject><subject>Libraries</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Solvers</subject><subject>Taxonomy</subject><subject>Theory of Computation</subject><issn>1867-2949</issn><issn>1867-2957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLcFz6uTyWSTeNPiR6Gggp5DupuULe1um2wP_nsjK3pyYJg5vO98PIxdcrjmAOomcZQCS-A6J6mSTtiE60qVaKQ6_e3JnLNZShvIIVBpYSZMvL0uF_e3hSu27Sq6-Fn0oTgcXRPd0NbFPvbr6Ha7tlsXbZcG19U-XbCz4LbJz37qlH08PrzPn8vly9Nifrcsa5JmKLkLtfCNNCtE0ZDXEJwCkg1pLrSR2gcBHoiaGqUh7hXXxlFoUFcICsSUXY1z8xWHo0-D3fTH2OWVFpEbqHhFmFV8VNWxTyn6YPex3eVPLAf7jceOeGzGY7_xWMoeHD0pa7u1j3-T_zd9ATLVZOw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Furini, Fabio</creator><creator>Traversi, Emiliano</creator><creator>Belotti, Pietro</creator><creator>Frangioni, Antonio</creator><creator>Gleixner, Ambros</creator><creator>Gould, Nick</creator><creator>Liberti, Leo</creator><creator>Lodi, Andrea</creator><creator>Misener, Ruth</creator><creator>Mittelmann, Hans</creator><creator>Sahinidis, Nikolaos V.</creator><creator>Vigerske, Stefan</creator><creator>Wiegele, Angelika</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>QPLIB: a library of quadratic programming instances</title><author>Furini, Fabio ; Traversi, Emiliano ; Belotti, Pietro ; Frangioni, Antonio ; Gleixner, Ambros ; Gould, Nick ; Liberti, Leo ; Lodi, Andrea ; Misener, Ruth ; Mittelmann, Hans ; Sahinidis, Nikolaos V. ; Vigerske, Stefan ; Wiegele, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Full Length Paper</topic><topic>Libraries</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Solvers</topic><topic>Taxonomy</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furini, Fabio</creatorcontrib><creatorcontrib>Traversi, Emiliano</creatorcontrib><creatorcontrib>Belotti, Pietro</creatorcontrib><creatorcontrib>Frangioni, Antonio</creatorcontrib><creatorcontrib>Gleixner, Ambros</creatorcontrib><creatorcontrib>Gould, Nick</creatorcontrib><creatorcontrib>Liberti, Leo</creatorcontrib><creatorcontrib>Lodi, Andrea</creatorcontrib><creatorcontrib>Misener, Ruth</creatorcontrib><creatorcontrib>Mittelmann, Hans</creatorcontrib><creatorcontrib>Sahinidis, Nikolaos V.</creatorcontrib><creatorcontrib>Vigerske, Stefan</creatorcontrib><creatorcontrib>Wiegele, Angelika</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical programming computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furini, Fabio</au><au>Traversi, Emiliano</au><au>Belotti, Pietro</au><au>Frangioni, Antonio</au><au>Gleixner, Ambros</au><au>Gould, Nick</au><au>Liberti, Leo</au><au>Lodi, Andrea</au><au>Misener, Ruth</au><au>Mittelmann, Hans</au><au>Sahinidis, Nikolaos V.</au><au>Vigerske, Stefan</au><au>Wiegele, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QPLIB: a library of quadratic programming instances</atitle><jtitle>Mathematical programming computation</jtitle><stitle>Math. Prog. Comp</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>237</spage><epage>265</epage><pages>237-265</pages><issn>1867-2949</issn><eissn>1867-2957</eissn><abstract>This paper describes a new instance library for quadratic programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function and/or the constraints are quadratic. QP is a very diverse class of problems, comprising sub-classes ranging from trivial to undecidable. This diversity is reflected in the variety of QP solution methods, ranging from entirely combinatorial approaches to completely continuous algorithms, including many methods for which both aspects are fundamental. Selecting a set of instances of QP that is at the same time not overwhelmingly onerous but sufficiently challenging for the different, interested communities is therefore important. We propose a simple taxonomy for QP instances leading to a systematic problem selection mechanism. We then briefly survey the field of QP, giving an overview of theory, methods and solvers. Finally, we describe how the library was put together, and detail its final contents.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12532-018-0147-4</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-2949
ispartof Mathematical programming computation, 2019-06, Vol.11 (2), p.237-265
issn 1867-2949
1867-2957
language eng
recordid cdi_proquest_journals_2219061642
source Springer Nature
subjects Algorithms
Combinatorial analysis
Full Length Paper
Libraries
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Optimization
Quadratic programming
Solvers
Taxonomy
Theory of Computation
title QPLIB: a library of quadratic programming instances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QPLIB:%20a%20library%20of%20quadratic%20programming%20instances&rft.jtitle=Mathematical%20programming%20computation&rft.au=Furini,%20Fabio&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=237&rft.epage=265&rft.pages=237-265&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007/s12532-018-0147-4&rft_dat=%3Cproquest_cross%3E2219061642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-1afc3ed59b223d4e80fa7045d48138958ef30e044dc25941e7189a4fd28620703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219061642&rft_id=info:pmid/&rfr_iscdi=true