Loading…
The far-infrared polarization spectrum of Rho Ophiuchi A from HAWC+/SOFIA observations
We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 \(\mu\)m) and D (154 \(\mu\)m). The slope of the polarization spectrum was investigated by defining the quantity R_DC = p_D/p_C, where p_C a...
Saved in:
Published in: | arXiv.org 2019-07 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on polarimetric maps made with HAWC+/SOFIA toward Rho Oph A, the densest portion of the Rho Ophiuchi molecular complex. We employed HAWC+ bands C (89 \(\mu\)m) and D (154 \(\mu\)m). The slope of the polarization spectrum was investigated by defining the quantity R_DC = p_D/p_C, where p_C and p_D represent polarization degrees in bands C and D, respectively. We find a clear correlation between R_DC and the molecular hydrogen column density across the cloud. A positive slope (R_DC > 1) dominates the lower density and well illuminated portions of the cloud, that are heated by the high mass star Oph S1, whereas a transition to a negative slope (R_DC < 1) is observed toward the denser and less evenly illuminated cloud core. We interpret the trends as due to a combination of: (1) Warm grains at the cloud outskirts, which are efficiently aligned by the abundant exposure to radiation from Oph S1, as proposed in the radiative torques theory; and (2) Cold grains deep in the cloud core, which are poorly aligned due to shielding from external radiation. To assess this interpretation, we developed a very simple toy model using a spherically symmetric cloud core based on Herschel data, and verified that the predicted variation of R_DC is consistent with the observations. This result introduces a new method that can be used to probe the grain alignment efficiency in molecular clouds, based on the analysis of trends in the far-infrared polarization spectrum. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1905.00705 |