Loading…

Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario

Conservation of rare species relies on a thorough knowledge of distributions and the locations of populations. Field surveys for new populations of rare species are time consuming and resource intensive. Thus, it is essential to conduct searches as efficiently as possible. Model-based sampling, wher...

Full description

Saved in:
Bibliographic Details
Published in:Biodiversity and conservation 2019-06, Vol.28 (7), p.1853-1862
Main Authors: Allen, Jessica L., McMullin, R. Troy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3
cites cdi_FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3
container_end_page 1862
container_issue 7
container_start_page 1853
container_title Biodiversity and conservation
container_volume 28
creator Allen, Jessica L.
McMullin, R. Troy
description Conservation of rare species relies on a thorough knowledge of distributions and the locations of populations. Field surveys for new populations of rare species are time consuming and resource intensive. Thus, it is essential to conduct searches as efficiently as possible. Model-based sampling, where species distribution models are used to select sites with high probability of the species presence for surveys, can drastically improve the efficiency and success of field sampling. The vast array of methods to build species distribution models can make it difficult to select one approach to implement for a project. Here we directly compared two methods, Maxent and non-parametric multiplicative regression (NPMR), using the endangered lichen Physconia subpallida as the focal species. We built models using all known localities of P. subpallida in Ontario, Canada, then ground-truthed each of the models for 9 days over a 2-year period, searching only areas predicted to have the highest level of probability of species occurrence. NPMR far outperformed Maxent, with the discovery of six new populations with a total of 36 individuals compared to one new population consisting of a single individual, respectively. The disparity between the two results likely stems from the potentially over-simplified response curves from Maxent when compared to NPMR. If a complex relationship is expected between the species and environmental variables, NPMR may outperform Maxent. However, there is not a single modeling algorithm that works best in every situation, so it is essential to test multiple modeling methods for guiding rare species surveys.
doi_str_mv 10.1007/s10531-019-01766-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2219338343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727339579</galeid><sourcerecordid>A727339579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEEkPhBVhZYgMLF1-SOGZXKtoiDWoXsLYc5yRx5bGD7QhNX4sXxDNBYocs-0j2_52L_6p6S8klJUR8TJQ0nGJCZdmibfHTs2pHG8GwFJQ8r3ZEtgRzSpuX1auUHkmBmpbuqt_fwgDO-glpN4Vo83xA1o9uBW8ABY_yDCitxkBKKIxoiTBYk0-Ah19oCcvqdLbBn1-jjkW9gLGQPqEphtUPOMc1zyfgcCqV0BjiOeuDdoA_g3NHdBNDymhvzQwevX-Yj8kEb3Up3C_aOTvoD6UrdO-zjja8rl6M2iV48zdeVD9uvny_vsP7-9uv11d7bHjTZdw10GlWc0kaSsvJBRGc8H7spWTSDLrWQgPvu3pojWC67TrWMyZ53Y8joT2_qN5teZcYfq6QsnoMa_SlpGKMSs47XvOiutxUU5lHlb8LOWpT1gAHW8aA0Zb7K8EE57IRsgBsA0yZOkUY1RLtQcejokSd3FSbm6q4qc5uqqcC8Q1KRewniP96-Q_1B1_rpZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219338343</pqid></control><display><type>article</type><title>Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario</title><source>Springer Nature</source><creator>Allen, Jessica L. ; McMullin, R. Troy</creator><creatorcontrib>Allen, Jessica L. ; McMullin, R. Troy</creatorcontrib><description>Conservation of rare species relies on a thorough knowledge of distributions and the locations of populations. Field surveys for new populations of rare species are time consuming and resource intensive. Thus, it is essential to conduct searches as efficiently as possible. Model-based sampling, where species distribution models are used to select sites with high probability of the species presence for surveys, can drastically improve the efficiency and success of field sampling. The vast array of methods to build species distribution models can make it difficult to select one approach to implement for a project. Here we directly compared two methods, Maxent and non-parametric multiplicative regression (NPMR), using the endangered lichen Physconia subpallida as the focal species. We built models using all known localities of P. subpallida in Ontario, Canada, then ground-truthed each of the models for 9 days over a 2-year period, searching only areas predicted to have the highest level of probability of species occurrence. NPMR far outperformed Maxent, with the discovery of six new populations with a total of 36 individuals compared to one new population consisting of a single individual, respectively. The disparity between the two results likely stems from the potentially over-simplified response curves from Maxent when compared to NPMR. If a complex relationship is expected between the species and environmental variables, NPMR may outperform Maxent. However, there is not a single modeling algorithm that works best in every situation, so it is essential to test multiple modeling methods for guiding rare species surveys.</description><identifier>ISSN: 0960-3115</identifier><identifier>EISSN: 1572-9710</identifier><identifier>DOI: 10.1007/s10531-019-01766-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Biodiversity ; Biomedical and Life Sciences ; Climate Change/Climate Change Impacts ; Conservation Biology/Ecology ; Datasets ; Distribution ; Ecology ; Endangered &amp; extinct species ; Endangered species ; Lichens ; Life Sciences ; Methods ; Modelling ; Original Paper ; Physconia ; Polls &amp; surveys ; Populations ; Probability theory ; Rare species ; Sampling ; Statistical analysis ; Success ; Surveys ; Test procedures ; User interface ; Variables ; Wildlife conservation</subject><ispartof>Biodiversity and conservation, 2019-06, Vol.28 (7), p.1853-1862</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Biodiversity and Conservation is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3</citedby><cites>FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Allen, Jessica L.</creatorcontrib><creatorcontrib>McMullin, R. Troy</creatorcontrib><title>Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario</title><title>Biodiversity and conservation</title><addtitle>Biodivers Conserv</addtitle><description>Conservation of rare species relies on a thorough knowledge of distributions and the locations of populations. Field surveys for new populations of rare species are time consuming and resource intensive. Thus, it is essential to conduct searches as efficiently as possible. Model-based sampling, where species distribution models are used to select sites with high probability of the species presence for surveys, can drastically improve the efficiency and success of field sampling. The vast array of methods to build species distribution models can make it difficult to select one approach to implement for a project. Here we directly compared two methods, Maxent and non-parametric multiplicative regression (NPMR), using the endangered lichen Physconia subpallida as the focal species. We built models using all known localities of P. subpallida in Ontario, Canada, then ground-truthed each of the models for 9 days over a 2-year period, searching only areas predicted to have the highest level of probability of species occurrence. NPMR far outperformed Maxent, with the discovery of six new populations with a total of 36 individuals compared to one new population consisting of a single individual, respectively. The disparity between the two results likely stems from the potentially over-simplified response curves from Maxent when compared to NPMR. If a complex relationship is expected between the species and environmental variables, NPMR may outperform Maxent. However, there is not a single modeling algorithm that works best in every situation, so it is essential to test multiple modeling methods for guiding rare species surveys.</description><subject>Algorithms</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Conservation Biology/Ecology</subject><subject>Datasets</subject><subject>Distribution</subject><subject>Ecology</subject><subject>Endangered &amp; extinct species</subject><subject>Endangered species</subject><subject>Lichens</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Physconia</subject><subject>Polls &amp; surveys</subject><subject>Populations</subject><subject>Probability theory</subject><subject>Rare species</subject><subject>Sampling</subject><subject>Statistical analysis</subject><subject>Success</subject><subject>Surveys</subject><subject>Test procedures</subject><subject>User interface</subject><subject>Variables</subject><subject>Wildlife conservation</subject><issn>0960-3115</issn><issn>1572-9710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEEkPhBVhZYgMLF1-SOGZXKtoiDWoXsLYc5yRx5bGD7QhNX4sXxDNBYocs-0j2_52L_6p6S8klJUR8TJQ0nGJCZdmibfHTs2pHG8GwFJQ8r3ZEtgRzSpuX1auUHkmBmpbuqt_fwgDO-glpN4Vo83xA1o9uBW8ABY_yDCitxkBKKIxoiTBYk0-Ah19oCcvqdLbBn1-jjkW9gLGQPqEphtUPOMc1zyfgcCqV0BjiOeuDdoA_g3NHdBNDymhvzQwevX-Yj8kEb3Up3C_aOTvoD6UrdO-zjja8rl6M2iV48zdeVD9uvny_vsP7-9uv11d7bHjTZdw10GlWc0kaSsvJBRGc8H7spWTSDLrWQgPvu3pojWC67TrWMyZ53Y8joT2_qN5teZcYfq6QsnoMa_SlpGKMSs47XvOiutxUU5lHlb8LOWpT1gAHW8aA0Zb7K8EE57IRsgBsA0yZOkUY1RLtQcejokSd3FSbm6q4qc5uqqcC8Q1KRewniP96-Q_1B1_rpZs</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Allen, Jessica L.</creator><creator>McMullin, R. Troy</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20190601</creationdate><title>Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario</title><author>Allen, Jessica L. ; McMullin, R. Troy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Conservation Biology/Ecology</topic><topic>Datasets</topic><topic>Distribution</topic><topic>Ecology</topic><topic>Endangered &amp; extinct species</topic><topic>Endangered species</topic><topic>Lichens</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Physconia</topic><topic>Polls &amp; surveys</topic><topic>Populations</topic><topic>Probability theory</topic><topic>Rare species</topic><topic>Sampling</topic><topic>Statistical analysis</topic><topic>Success</topic><topic>Surveys</topic><topic>Test procedures</topic><topic>User interface</topic><topic>Variables</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, Jessica L.</creatorcontrib><creatorcontrib>McMullin, R. Troy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Biodiversity and conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Jessica L.</au><au>McMullin, R. Troy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario</atitle><jtitle>Biodiversity and conservation</jtitle><stitle>Biodivers Conserv</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>1853</spage><epage>1862</epage><pages>1853-1862</pages><issn>0960-3115</issn><eissn>1572-9710</eissn><abstract>Conservation of rare species relies on a thorough knowledge of distributions and the locations of populations. Field surveys for new populations of rare species are time consuming and resource intensive. Thus, it is essential to conduct searches as efficiently as possible. Model-based sampling, where species distribution models are used to select sites with high probability of the species presence for surveys, can drastically improve the efficiency and success of field sampling. The vast array of methods to build species distribution models can make it difficult to select one approach to implement for a project. Here we directly compared two methods, Maxent and non-parametric multiplicative regression (NPMR), using the endangered lichen Physconia subpallida as the focal species. We built models using all known localities of P. subpallida in Ontario, Canada, then ground-truthed each of the models for 9 days over a 2-year period, searching only areas predicted to have the highest level of probability of species occurrence. NPMR far outperformed Maxent, with the discovery of six new populations with a total of 36 individuals compared to one new population consisting of a single individual, respectively. The disparity between the two results likely stems from the potentially over-simplified response curves from Maxent when compared to NPMR. If a complex relationship is expected between the species and environmental variables, NPMR may outperform Maxent. However, there is not a single modeling algorithm that works best in every situation, so it is essential to test multiple modeling methods for guiding rare species surveys.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10531-019-01766-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3115
ispartof Biodiversity and conservation, 2019-06, Vol.28 (7), p.1853-1862
issn 0960-3115
1572-9710
language eng
recordid cdi_proquest_journals_2219338343
source Springer Nature
subjects Algorithms
Biodiversity
Biomedical and Life Sciences
Climate Change/Climate Change Impacts
Conservation Biology/Ecology
Datasets
Distribution
Ecology
Endangered & extinct species
Endangered species
Lichens
Life Sciences
Methods
Modelling
Original Paper
Physconia
Polls & surveys
Populations
Probability theory
Rare species
Sampling
Statistical analysis
Success
Surveys
Test procedures
User interface
Variables
Wildlife conservation
title Modeling algorithm influence on the success of predicting new populations of rare species: ground-truthing models for the Pale-Belly Frost Lichen (Physconia subpallida) in Ontario
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20algorithm%20influence%20on%20the%20success%20of%20predicting%20new%20populations%20of%20rare%20species:%20ground-truthing%20models%20for%20the%20Pale-Belly%20Frost%20Lichen%20(Physconia%20subpallida)%20in%20Ontario&rft.jtitle=Biodiversity%20and%20conservation&rft.au=Allen,%20Jessica%20L.&rft.date=2019-06-01&rft.volume=28&rft.issue=7&rft.spage=1853&rft.epage=1862&rft.pages=1853-1862&rft.issn=0960-3115&rft.eissn=1572-9710&rft_id=info:doi/10.1007/s10531-019-01766-z&rft_dat=%3Cgale_proqu%3EA727339579%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-85e8a243905113903707303bfb9929cda4a7ae3b84d6c72a6882b22934bff01b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219338343&rft_id=info:pmid/&rft_galeid=A727339579&rfr_iscdi=true