Loading…
More on a hyperbolic‐cotangent class of difference equations
We present a natural method for solving the difference equation xn=xn−kxn−l+axn−k+xn−l,n∈N0, where k,l∈N, parameter a, and initial values x−j, j=1,t‾, t=max{k,l}, are real or complex numbers. As a concrete example, the case k = 1, l = 2 is studied in detail, and several interesting formulas for solu...
Saved in:
Published in: | Mathematical methods in the applied sciences 2019-06, Vol.42 (9), p.2974-2992 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3 |
container_end_page | 2992 |
container_issue | 9 |
container_start_page | 2974 |
container_title | Mathematical methods in the applied sciences |
container_volume | 42 |
creator | Stević, Stevo Iričanin, Bratislav Kosmala, Witold |
description | We present a natural method for solving the difference equation
xn=xn−kxn−l+axn−k+xn−l,n∈N0,
where
k,l∈N, parameter a, and initial values x−j,
j=1,t‾,
t=max{k,l}, are real or complex numbers. As a concrete example, the case k = 1, l = 2 is studied in detail, and several interesting formulas for solutions and objects used in the analysis of the equation are given. A useful remark on solvability of difference equations on complex domains is presented and used here. |
doi_str_mv | 10.1002/mma.5541 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220130413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220130413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3</originalsourceid><addsrcrecordid>eNp10M1KAzEQwPEgCtYq-AgBL162ziTZr4tQil_Q4kXPIZ-6Zbtpky3Sm4_gM_okbq1XT8PAjxn4E3KJMEEAdrNaqUmeCzwiI4S6zlCUxTEZAZaQCYbilJyltASACpGNyO0iREdDRxV9361d1KFtzPfnlwm96t5c11PTqpRo8NQ23rvoOuOo22xV34QunZMTr9rkLv7mmLze373MHrP588PTbDrPDKs5Zgp1pVBpb3yBmnHPS4SKW1VpzQvrjKjMsDJb5Cz3olaFstaAU1ZXpQXLx-TqcHcdw2brUi-XYRu74aVkjAFyEMgHdX1QJoaUovNyHZuVijuJIPd15FBH7usMNDvQj6Z1u3-dXCymv_4HxuxnBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220130413</pqid></control><display><type>article</type><title>More on a hyperbolic‐cotangent class of difference equations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Stević, Stevo ; Iričanin, Bratislav ; Kosmala, Witold</creator><creatorcontrib>Stević, Stevo ; Iričanin, Bratislav ; Kosmala, Witold</creatorcontrib><description>We present a natural method for solving the difference equation
xn=xn−kxn−l+axn−k+xn−l,n∈N0,
where
k,l∈N, parameter a, and initial values x−j,
j=1,t‾,
t=max{k,l}, are real or complex numbers. As a concrete example, the case k = 1, l = 2 is studied in detail, and several interesting formulas for solutions and objects used in the analysis of the equation are given. A useful remark on solvability of difference equations on complex domains is presented and used here.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5541</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>closed‐form formula ; complex domain ; Complex numbers ; Difference equations ; Domains ; Mathematical analysis ; solvability</subject><ispartof>Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.2974-2992</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3</citedby><cites>FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3</cites><orcidid>0000-0002-7202-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Iričanin, Bratislav</creatorcontrib><creatorcontrib>Kosmala, Witold</creatorcontrib><title>More on a hyperbolic‐cotangent class of difference equations</title><title>Mathematical methods in the applied sciences</title><description>We present a natural method for solving the difference equation
xn=xn−kxn−l+axn−k+xn−l,n∈N0,
where
k,l∈N, parameter a, and initial values x−j,
j=1,t‾,
t=max{k,l}, are real or complex numbers. As a concrete example, the case k = 1, l = 2 is studied in detail, and several interesting formulas for solutions and objects used in the analysis of the equation are given. A useful remark on solvability of difference equations on complex domains is presented and used here.</description><subject>closed‐form formula</subject><subject>complex domain</subject><subject>Complex numbers</subject><subject>Difference equations</subject><subject>Domains</subject><subject>Mathematical analysis</subject><subject>solvability</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQwPEgCtYq-AgBL162ziTZr4tQil_Q4kXPIZ-6Zbtpky3Sm4_gM_okbq1XT8PAjxn4E3KJMEEAdrNaqUmeCzwiI4S6zlCUxTEZAZaQCYbilJyltASACpGNyO0iREdDRxV9361d1KFtzPfnlwm96t5c11PTqpRo8NQ23rvoOuOo22xV34QunZMTr9rkLv7mmLze373MHrP588PTbDrPDKs5Zgp1pVBpb3yBmnHPS4SKW1VpzQvrjKjMsDJb5Cz3olaFstaAU1ZXpQXLx-TqcHcdw2brUi-XYRu74aVkjAFyEMgHdX1QJoaUovNyHZuVijuJIPd15FBH7usMNDvQj6Z1u3-dXCymv_4HxuxnBA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Stević, Stevo</creator><creator>Iričanin, Bratislav</creator><creator>Kosmala, Witold</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></search><sort><creationdate>201906</creationdate><title>More on a hyperbolic‐cotangent class of difference equations</title><author>Stević, Stevo ; Iričanin, Bratislav ; Kosmala, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>closed‐form formula</topic><topic>complex domain</topic><topic>Complex numbers</topic><topic>Difference equations</topic><topic>Domains</topic><topic>Mathematical analysis</topic><topic>solvability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stević, Stevo</creatorcontrib><creatorcontrib>Iričanin, Bratislav</creatorcontrib><creatorcontrib>Kosmala, Witold</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stević, Stevo</au><au>Iričanin, Bratislav</au><au>Kosmala, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More on a hyperbolic‐cotangent class of difference equations</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-06</date><risdate>2019</risdate><volume>42</volume><issue>9</issue><spage>2974</spage><epage>2992</epage><pages>2974-2992</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We present a natural method for solving the difference equation
xn=xn−kxn−l+axn−k+xn−l,n∈N0,
where
k,l∈N, parameter a, and initial values x−j,
j=1,t‾,
t=max{k,l}, are real or complex numbers. As a concrete example, the case k = 1, l = 2 is studied in detail, and several interesting formulas for solutions and objects used in the analysis of the equation are given. A useful remark on solvability of difference equations on complex domains is presented and used here.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5541</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.2974-2992 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2220130413 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | closed‐form formula complex domain Complex numbers Difference equations Domains Mathematical analysis solvability |
title | More on a hyperbolic‐cotangent class of difference equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20on%20a%20hyperbolic%E2%80%90cotangent%20class%20of%20difference%20equations&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Stevi%C4%87,%20Stevo&rft.date=2019-06&rft.volume=42&rft.issue=9&rft.spage=2974&rft.epage=2992&rft.pages=2974-2992&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5541&rft_dat=%3Cproquest_cross%3E2220130413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2931-a1b8a1abfcf61b23f371083da8bb36dec48c83d2d6525f49a6addc0eadb87d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2220130413&rft_id=info:pmid/&rfr_iscdi=true |