Loading…

Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content

Different amounts of a low (L/h = 100) and a high aspect ratio (L/h = 22,000) synthetic clay (hectorite) have been compounded into a polyetherimide matrix by solution casting. By applying these fillers with largely different aspect ratios we were able to validate the different and partially contradi...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2019-04, Vol.169, p.74-79
Main Authors: Kunz, Raphael, Martin, Thomas, Callsen, Christoph, Hutschreuther, Julia, Altstädt, Volker, Breu, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3
cites cdi_FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3
container_end_page 79
container_issue
container_start_page 74
container_title Polymer (Guilford)
container_volume 169
creator Kunz, Raphael
Martin, Thomas
Callsen, Christoph
Hutschreuther, Julia
Altstädt, Volker
Breu, Josef
description Different amounts of a low (L/h = 100) and a high aspect ratio (L/h = 22,000) synthetic clay (hectorite) have been compounded into a polyetherimide matrix by solution casting. By applying these fillers with largely different aspect ratios we were able to validate the different and partially contradicting models found in the literature to predict coefficients of thermal expansion (CTE) of nanocomposites. A comparison with experimentally observed CTEs identified Lu's model to give the best agreement. In this model, the CTE is highly non-linear in respect to both the aspect ratio and the filler content allowing to identify technically benign combinations that assure a given target-CTE. For instance, for printed circuit boards made of thermoplastic PEI, an aspect ratio of around 1000 and a filler content of about 13 vol% are predicted to perfectly match the CTE of the nanocomposite to the CTE of copper while maintaining processability. [Display omitted] •Determination of the coefficient of thermal expansion (CTE) for synthetic clay.•Experimentally verification of different CTE models for nanocomposites with disk-like fillers.•Technically relevant conclusions for optimum combinations of aspect ratio and filler content to meet CTE requirement of PCBs.
doi_str_mv 10.1016/j.polymer.2019.02.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221236946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119301673</els_id><sourcerecordid>2221236946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThIDn1nx0m-YksvgFC17Wc5imCaa0SU264v57I9u7MMzAzHtveA-hW0pKSmh935dTGI6jiSUjVJaElYTXZ2hFG8ELxiQ9RytCOCt4U9NLdJVSTwhhG1atEOw_TRxhwOZnAp9c8DhYrAc44kUUe_BBh3EKyc0mYciF7cHreQFDmoyecYS8wOA7bN0wZJ4OfjZ-vkYXFoZkbpa5Rh_PT_vta7F7f3nbPu4KzUU1FyCkMBSkqDqWu5WirTteUSCsA2gElaAlk1UrBG9NZXkrm7pqLCfGbBpi-RrdnXSnGL4OJs2qD4fo80vFGKOM17KqM2pzQukYUorGqim6EeJRUaL-0lS9WoyrvzQVYSqnmXkPJ57JFr5dvibtjNemczG7V11w_yj8AghsgdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221236946</pqid></control><display><type>article</type><title>Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content</title><source>Elsevier</source><creator>Kunz, Raphael ; Martin, Thomas ; Callsen, Christoph ; Hutschreuther, Julia ; Altstädt, Volker ; Breu, Josef</creator><creatorcontrib>Kunz, Raphael ; Martin, Thomas ; Callsen, Christoph ; Hutschreuther, Julia ; Altstädt, Volker ; Breu, Josef</creatorcontrib><description>Different amounts of a low (L/h = 100) and a high aspect ratio (L/h = 22,000) synthetic clay (hectorite) have been compounded into a polyetherimide matrix by solution casting. By applying these fillers with largely different aspect ratios we were able to validate the different and partially contradicting models found in the literature to predict coefficients of thermal expansion (CTE) of nanocomposites. A comparison with experimentally observed CTEs identified Lu's model to give the best agreement. In this model, the CTE is highly non-linear in respect to both the aspect ratio and the filler content allowing to identify technically benign combinations that assure a given target-CTE. For instance, for printed circuit boards made of thermoplastic PEI, an aspect ratio of around 1000 and a filler content of about 13 vol% are predicted to perfectly match the CTE of the nanocomposite to the CTE of copper while maintaining processability. [Display omitted] •Determination of the coefficient of thermal expansion (CTE) for synthetic clay.•Experimentally verification of different CTE models for nanocomposites with disk-like fillers.•Technically relevant conclusions for optimum combinations of aspect ratio and filler content to meet CTE requirement of PCBs.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.02.036</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Circuit boards ; Clay ; Clay nanocomposites ; CTE ; Fillers ; High aspect ratio ; Mathematical models ; Nanocomposites ; Polyetherimide ; Polyetherimides ; Thermal expansion</subject><ispartof>Polymer (Guilford), 2019-04, Vol.169, p.74-79</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3</citedby><cites>FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3</cites><orcidid>0000-0002-2547-3950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kunz, Raphael</creatorcontrib><creatorcontrib>Martin, Thomas</creatorcontrib><creatorcontrib>Callsen, Christoph</creatorcontrib><creatorcontrib>Hutschreuther, Julia</creatorcontrib><creatorcontrib>Altstädt, Volker</creatorcontrib><creatorcontrib>Breu, Josef</creatorcontrib><title>Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content</title><title>Polymer (Guilford)</title><description>Different amounts of a low (L/h = 100) and a high aspect ratio (L/h = 22,000) synthetic clay (hectorite) have been compounded into a polyetherimide matrix by solution casting. By applying these fillers with largely different aspect ratios we were able to validate the different and partially contradicting models found in the literature to predict coefficients of thermal expansion (CTE) of nanocomposites. A comparison with experimentally observed CTEs identified Lu's model to give the best agreement. In this model, the CTE is highly non-linear in respect to both the aspect ratio and the filler content allowing to identify technically benign combinations that assure a given target-CTE. For instance, for printed circuit boards made of thermoplastic PEI, an aspect ratio of around 1000 and a filler content of about 13 vol% are predicted to perfectly match the CTE of the nanocomposite to the CTE of copper while maintaining processability. [Display omitted] •Determination of the coefficient of thermal expansion (CTE) for synthetic clay.•Experimentally verification of different CTE models for nanocomposites with disk-like fillers.•Technically relevant conclusions for optimum combinations of aspect ratio and filler content to meet CTE requirement of PCBs.</description><subject>Circuit boards</subject><subject>Clay</subject><subject>Clay nanocomposites</subject><subject>CTE</subject><subject>Fillers</subject><subject>High aspect ratio</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Polyetherimide</subject><subject>Polyetherimides</subject><subject>Thermal expansion</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThIDn1nx0m-YksvgFC17Wc5imCaa0SU264v57I9u7MMzAzHtveA-hW0pKSmh935dTGI6jiSUjVJaElYTXZ2hFG8ELxiQ9RytCOCt4U9NLdJVSTwhhG1atEOw_TRxhwOZnAp9c8DhYrAc44kUUe_BBh3EKyc0mYciF7cHreQFDmoyecYS8wOA7bN0wZJ4OfjZ-vkYXFoZkbpa5Rh_PT_vta7F7f3nbPu4KzUU1FyCkMBSkqDqWu5WirTteUSCsA2gElaAlk1UrBG9NZXkrm7pqLCfGbBpi-RrdnXSnGL4OJs2qD4fo80vFGKOM17KqM2pzQukYUorGqim6EeJRUaL-0lS9WoyrvzQVYSqnmXkPJ57JFr5dvibtjNemczG7V11w_yj8AghsgdY</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Kunz, Raphael</creator><creator>Martin, Thomas</creator><creator>Callsen, Christoph</creator><creator>Hutschreuther, Julia</creator><creator>Altstädt, Volker</creator><creator>Breu, Josef</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2547-3950</orcidid></search><sort><creationdate>20190415</creationdate><title>Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content</title><author>Kunz, Raphael ; Martin, Thomas ; Callsen, Christoph ; Hutschreuther, Julia ; Altstädt, Volker ; Breu, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuit boards</topic><topic>Clay</topic><topic>Clay nanocomposites</topic><topic>CTE</topic><topic>Fillers</topic><topic>High aspect ratio</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Polyetherimide</topic><topic>Polyetherimides</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunz, Raphael</creatorcontrib><creatorcontrib>Martin, Thomas</creatorcontrib><creatorcontrib>Callsen, Christoph</creatorcontrib><creatorcontrib>Hutschreuther, Julia</creatorcontrib><creatorcontrib>Altstädt, Volker</creatorcontrib><creatorcontrib>Breu, Josef</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunz, Raphael</au><au>Martin, Thomas</au><au>Callsen, Christoph</au><au>Hutschreuther, Julia</au><au>Altstädt, Volker</au><au>Breu, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>169</volume><spage>74</spage><epage>79</epage><pages>74-79</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Different amounts of a low (L/h = 100) and a high aspect ratio (L/h = 22,000) synthetic clay (hectorite) have been compounded into a polyetherimide matrix by solution casting. By applying these fillers with largely different aspect ratios we were able to validate the different and partially contradicting models found in the literature to predict coefficients of thermal expansion (CTE) of nanocomposites. A comparison with experimentally observed CTEs identified Lu's model to give the best agreement. In this model, the CTE is highly non-linear in respect to both the aspect ratio and the filler content allowing to identify technically benign combinations that assure a given target-CTE. For instance, for printed circuit boards made of thermoplastic PEI, an aspect ratio of around 1000 and a filler content of about 13 vol% are predicted to perfectly match the CTE of the nanocomposite to the CTE of copper while maintaining processability. [Display omitted] •Determination of the coefficient of thermal expansion (CTE) for synthetic clay.•Experimentally verification of different CTE models for nanocomposites with disk-like fillers.•Technically relevant conclusions for optimum combinations of aspect ratio and filler content to meet CTE requirement of PCBs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.02.036</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2547-3950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2019-04, Vol.169, p.74-79
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2221236946
source Elsevier
subjects Circuit boards
Clay
Clay nanocomposites
CTE
Fillers
High aspect ratio
Mathematical models
Nanocomposites
Polyetherimide
Polyetherimides
Thermal expansion
title Thermal expansion of clay polymer nanocomposites as a function of aspect ratio and filler content
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20expansion%20of%20clay%20polymer%20nanocomposites%20as%20a%20function%20of%20aspect%20ratio%20and%20filler%20content&rft.jtitle=Polymer%20(Guilford)&rft.au=Kunz,%20Raphael&rft.date=2019-04-15&rft.volume=169&rft.spage=74&rft.epage=79&rft.pages=74-79&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.02.036&rft_dat=%3Cproquest_cross%3E2221236946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-a797e1a974d2a97f97b6d341a02daa8719ac9294b773be4f3b98648f30ee580f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2221236946&rft_id=info:pmid/&rfr_iscdi=true