Loading…
Influence of surface roughness from additive manufacturing on laser ultrasonics measurements
Additive manufacturing (AM) is viewed as a revolutionary technique as it offers numerous appealing capabilities such as complex geometries, functionally graded properties, build-upon-demand, repairs, etc. However, in order to attain the full potential of AM, nondestructive testing for quality assura...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing (AM) is viewed as a revolutionary technique as it offers numerous appealing capabilities such as complex geometries, functionally graded properties, build-upon-demand, repairs, etc. However, in order to attain the full potential of AM, nondestructive testing for quality assurance of AM parts is essential. Laser ultrasound is of particular interest as a nondestructive technique for AM as it provides a viable means of in-situ process monitoring that could ultimately provide feedback for process control. Rayleigh waves generated by a pulsed laser could interrogate the current layer in the AM build and be received by a laser interferometer. The surface roughness is one challenge that must be overcome if Rayleigh waves are to be used for in-situ monitoring. Surface roughness has detrimental effects on the quality of measurements of laser ultrasonics due to factors such as speckle noise, non-uniform reflectivity of the surface, and wave scattering. In this research, we have studied the effects of surface roughness on generation, ultrasonic wave propagation and reception of laser-generated Rayleigh waves. Further investigations on the effects of surface roughness on nonlinear ultrasonic waves are also being carried out. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5099713 |