Loading…
Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process
Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a...
Saved in:
Published in: | Fuel (Guildford) 2019-07, Vol.247, p.315-323 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73 |
container_end_page | 323 |
container_issue | |
container_start_page | 315 |
container_title | Fuel (Guildford) |
container_volume | 247 |
creator | Jia, Xinfeng Qu, Tailai Chen, Haidong Chen, Zhangxin |
description | Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD. |
doi_str_mv | 10.1016/j.fuel.2019.03.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221787613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119303886</els_id><sourcerecordid>2221787613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAix52nUn2X8FLqVqFgger1xCzk5ql3a3JdqHf3pR69jQD8968x4-xa4QUAYv7JrU7WqcCcJKCTEGIEzbCqpRJibk8ZSOIqkTIAs_ZRQgNAJRVno3Y59LrNjhqe266diDTu4H4N-me94eLJc9dyzUPPelNokNwcav5yuvB9Xtee-1avSJ--z6dP97xre8MhXDJzqxeB7r6m2P28fy0nL0ki7f562y6SIws8j4xAu3kq5ZIaLNMTmxmAOscDUhTyspSDlBbPQGZi9jXYJWXhdakrUCoomTMbo5_Y-7PjkKvmm7n2xiphBBYVmWBMqrEUWV8F4Inq7bebbTfKwR14KcadeCnDvwUSBX5RdPD0USx_-DIq2AiJ0O18xGTqjv3n_0XigN4rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221787613</pqid></control><display><type>article</type><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><source>ScienceDirect Freedom Collection</source><creator>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</creator><creatorcontrib>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</creatorcontrib><description>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.03.022</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Compressibility ; Conduction ; Conduction and convection ; Conduction heating ; Convection ; Convection velocity ; Convective heat transfer ; Drainage ; Gravitation ; Heat transfer ; Heat transport ; Initial pressure ; Mathematical models ; Pressure ; Pressure diffusion ; Reservoirs ; SAGD ; Sensitivity analysis ; Steam ; Transient heat transfer ; Transport ; Velocity ; Viscosity</subject><ispartof>Fuel (Guildford), 2019-07, Vol.247, p.315-323</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</citedby><cites>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Xinfeng</creatorcontrib><creatorcontrib>Qu, Tailai</creatorcontrib><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><title>Fuel (Guildford)</title><description>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</description><subject>Compressibility</subject><subject>Conduction</subject><subject>Conduction and convection</subject><subject>Conduction heating</subject><subject>Convection</subject><subject>Convection velocity</subject><subject>Convective heat transfer</subject><subject>Drainage</subject><subject>Gravitation</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Initial pressure</subject><subject>Mathematical models</subject><subject>Pressure</subject><subject>Pressure diffusion</subject><subject>Reservoirs</subject><subject>SAGD</subject><subject>Sensitivity analysis</subject><subject>Steam</subject><subject>Transient heat transfer</subject><subject>Transport</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAix52nUn2X8FLqVqFgger1xCzk5ql3a3JdqHf3pR69jQD8968x4-xa4QUAYv7JrU7WqcCcJKCTEGIEzbCqpRJibk8ZSOIqkTIAs_ZRQgNAJRVno3Y59LrNjhqe266diDTu4H4N-me94eLJc9dyzUPPelNokNwcav5yuvB9Xtee-1avSJ--z6dP97xre8MhXDJzqxeB7r6m2P28fy0nL0ki7f562y6SIws8j4xAu3kq5ZIaLNMTmxmAOscDUhTyspSDlBbPQGZi9jXYJWXhdakrUCoomTMbo5_Y-7PjkKvmm7n2xiphBBYVmWBMqrEUWV8F4Inq7bebbTfKwR14KcadeCnDvwUSBX5RdPD0USx_-DIq2AiJ0O18xGTqjv3n_0XigN4rQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jia, Xinfeng</creator><creator>Qu, Tailai</creator><creator>Chen, Haidong</creator><creator>Chen, Zhangxin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190701</creationdate><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><author>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compressibility</topic><topic>Conduction</topic><topic>Conduction and convection</topic><topic>Conduction heating</topic><topic>Convection</topic><topic>Convection velocity</topic><topic>Convective heat transfer</topic><topic>Drainage</topic><topic>Gravitation</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Initial pressure</topic><topic>Mathematical models</topic><topic>Pressure</topic><topic>Pressure diffusion</topic><topic>Reservoirs</topic><topic>SAGD</topic><topic>Sensitivity analysis</topic><topic>Steam</topic><topic>Transient heat transfer</topic><topic>Transport</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xinfeng</creatorcontrib><creatorcontrib>Qu, Tailai</creatorcontrib><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xinfeng</au><au>Qu, Tailai</au><au>Chen, Haidong</au><au>Chen, Zhangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>247</volume><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.03.022</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-07, Vol.247, p.315-323 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2221787613 |
source | ScienceDirect Freedom Collection |
subjects | Compressibility Conduction Conduction and convection Conduction heating Convection Convection velocity Convective heat transfer Drainage Gravitation Heat transfer Heat transport Initial pressure Mathematical models Pressure Pressure diffusion Reservoirs SAGD Sensitivity analysis Steam Transient heat transfer Transport Velocity Viscosity |
title | Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20convective%20heat%20transfer%20in%20a%20steam-assisted%20gravity%20drainage%20(SAGD)%20process&rft.jtitle=Fuel%20(Guildford)&rft.au=Jia,%20Xinfeng&rft.date=2019-07-01&rft.volume=247&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.03.022&rft_dat=%3Cproquest_cross%3E2221787613%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2221787613&rft_id=info:pmid/&rfr_iscdi=true |