Loading…

Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process

Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2019-07, Vol.247, p.315-323
Main Authors: Jia, Xinfeng, Qu, Tailai, Chen, Haidong, Chen, Zhangxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73
cites cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73
container_end_page 323
container_issue
container_start_page 315
container_title Fuel (Guildford)
container_volume 247
creator Jia, Xinfeng
Qu, Tailai
Chen, Haidong
Chen, Zhangxin
description Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.
doi_str_mv 10.1016/j.fuel.2019.03.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221787613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119303886</els_id><sourcerecordid>2221787613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAix52nUn2X8FLqVqFgger1xCzk5ql3a3JdqHf3pR69jQD8968x4-xa4QUAYv7JrU7WqcCcJKCTEGIEzbCqpRJibk8ZSOIqkTIAs_ZRQgNAJRVno3Y59LrNjhqe266diDTu4H4N-me94eLJc9dyzUPPelNokNwcav5yuvB9Xtee-1avSJ--z6dP97xre8MhXDJzqxeB7r6m2P28fy0nL0ki7f562y6SIws8j4xAu3kq5ZIaLNMTmxmAOscDUhTyspSDlBbPQGZi9jXYJWXhdakrUCoomTMbo5_Y-7PjkKvmm7n2xiphBBYVmWBMqrEUWV8F4Inq7bebbTfKwR14KcadeCnDvwUSBX5RdPD0USx_-DIq2AiJ0O18xGTqjv3n_0XigN4rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221787613</pqid></control><display><type>article</type><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><source>ScienceDirect Freedom Collection</source><creator>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</creator><creatorcontrib>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</creatorcontrib><description>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.03.022</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Compressibility ; Conduction ; Conduction and convection ; Conduction heating ; Convection ; Convection velocity ; Convective heat transfer ; Drainage ; Gravitation ; Heat transfer ; Heat transport ; Initial pressure ; Mathematical models ; Pressure ; Pressure diffusion ; Reservoirs ; SAGD ; Sensitivity analysis ; Steam ; Transient heat transfer ; Transport ; Velocity ; Viscosity</subject><ispartof>Fuel (Guildford), 2019-07, Vol.247, p.315-323</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</citedby><cites>FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Xinfeng</creatorcontrib><creatorcontrib>Qu, Tailai</creatorcontrib><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><title>Fuel (Guildford)</title><description>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</description><subject>Compressibility</subject><subject>Conduction</subject><subject>Conduction and convection</subject><subject>Conduction heating</subject><subject>Convection</subject><subject>Convection velocity</subject><subject>Convective heat transfer</subject><subject>Drainage</subject><subject>Gravitation</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Initial pressure</subject><subject>Mathematical models</subject><subject>Pressure</subject><subject>Pressure diffusion</subject><subject>Reservoirs</subject><subject>SAGD</subject><subject>Sensitivity analysis</subject><subject>Steam</subject><subject>Transient heat transfer</subject><subject>Transport</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAix52nUn2X8FLqVqFgger1xCzk5ql3a3JdqHf3pR69jQD8968x4-xa4QUAYv7JrU7WqcCcJKCTEGIEzbCqpRJibk8ZSOIqkTIAs_ZRQgNAJRVno3Y59LrNjhqe266diDTu4H4N-me94eLJc9dyzUPPelNokNwcav5yuvB9Xtee-1avSJ--z6dP97xre8MhXDJzqxeB7r6m2P28fy0nL0ki7f562y6SIws8j4xAu3kq5ZIaLNMTmxmAOscDUhTyspSDlBbPQGZi9jXYJWXhdakrUCoomTMbo5_Y-7PjkKvmm7n2xiphBBYVmWBMqrEUWV8F4Inq7bebbTfKwR14KcadeCnDvwUSBX5RdPD0USx_-DIq2AiJ0O18xGTqjv3n_0XigN4rQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jia, Xinfeng</creator><creator>Qu, Tailai</creator><creator>Chen, Haidong</creator><creator>Chen, Zhangxin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190701</creationdate><title>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</title><author>Jia, Xinfeng ; Qu, Tailai ; Chen, Haidong ; Chen, Zhangxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compressibility</topic><topic>Conduction</topic><topic>Conduction and convection</topic><topic>Conduction heating</topic><topic>Convection</topic><topic>Convection velocity</topic><topic>Convective heat transfer</topic><topic>Drainage</topic><topic>Gravitation</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Initial pressure</topic><topic>Mathematical models</topic><topic>Pressure</topic><topic>Pressure diffusion</topic><topic>Reservoirs</topic><topic>SAGD</topic><topic>Sensitivity analysis</topic><topic>Steam</topic><topic>Transient heat transfer</topic><topic>Transport</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xinfeng</creatorcontrib><creatorcontrib>Qu, Tailai</creatorcontrib><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Chen, Zhangxin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xinfeng</au><au>Qu, Tailai</au><au>Chen, Haidong</au><au>Chen, Zhangxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>247</volume><spage>315</spage><epage>323</epage><pages>315-323</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Viscosity reduction through heat transport from steam to bitumen is one of the most important recovery mechanisms of a steam-assisted gravity drainage (SAGD) process. Both heat convection and conduction contribute to the heat transport. Although conduction is considered as dominant through most of a SAGD process, an understanding of heat convection, especially accurate modeling of a condensate convection velocity, is still limited in the literature. This paper develops a mathematical model for the transient heat transfer beyond a steam chamber boundary in SAGD. A convection velocity is clearly formulated, which requires the coupling of heat transport and pressure diffusion. Calculation results show that in SAGD, convection plays a minor role than conduction. In addition, the relative contribution of convection can be influenced by reservoir formation compressibility, steam chamber boundary advancing velocity, and particularly by a difference between steam injection pressure and reservoir initial pressure. Correlations are regressed to estimate the relative contribution of heat convection (ratio) in the overall heat transfer process during a stabilized production period of SAGD.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.03.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-07, Vol.247, p.315-323
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2221787613
source ScienceDirect Freedom Collection
subjects Compressibility
Conduction
Conduction and convection
Conduction heating
Convection
Convection velocity
Convective heat transfer
Drainage
Gravitation
Heat transfer
Heat transport
Initial pressure
Mathematical models
Pressure
Pressure diffusion
Reservoirs
SAGD
Sensitivity analysis
Steam
Transient heat transfer
Transport
Velocity
Viscosity
title Transient convective heat transfer in a steam-assisted gravity drainage (SAGD) process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20convective%20heat%20transfer%20in%20a%20steam-assisted%20gravity%20drainage%20(SAGD)%20process&rft.jtitle=Fuel%20(Guildford)&rft.au=Jia,%20Xinfeng&rft.date=2019-07-01&rft.volume=247&rft.spage=315&rft.epage=323&rft.pages=315-323&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.03.022&rft_dat=%3Cproquest_cross%3E2221787613%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-c21f9bd31e1f4439f4c01d51c03c738fe500dfa90352785c18576aaeaf2108c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2221787613&rft_id=info:pmid/&rfr_iscdi=true