Loading…

Measurement of vortex shedding in the wake of a sphere at

Flow in the wake of a sphere has been studied for at least the last hundred years. The three-dimensional (3-D) flow structure has been observed many times using dye visualization and prior to the direct numerical simulations by Johnson & Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70), its s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2019-07, Vol.870, p.290-315
Main Authors: Eshbal, L., Rinsky, V., David, T., Greenblatt, D., van Hout, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63
cites cdi_FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63
container_end_page 315
container_issue
container_start_page 290
container_title Journal of fluid mechanics
container_volume 870
creator Eshbal, L.
Rinsky, V.
David, T.
Greenblatt, D.
van Hout, R.
description Flow in the wake of a sphere has been studied for at least the last hundred years. The three-dimensional (3-D) flow structure has been observed many times using dye visualization and prior to the direct numerical simulations by Johnson & Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70), its structure at a Reynolds number of approximately 300, was believed to consist of a one-sided chain of hairpin-like vortices. However, the numerical simulations by Johnson & Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70) also showed that so-called ‘induced’ vortices were generated. The present results are the first spatially resolved measurements that elucidate the 3-D vortex shedding cycle in the wake of a sphere at a Reynolds number of 465. Tomographic particle image velocimetry (tomo-PIV) enabled snapshots of the vortical structure and by combining these results with temporally resolved planar PIV, the ensemble averaged shedding cycle in the wake of the sphere was reconstructed. The present results clearly indicate that besides the ‘primary’ vortex chain shed from the sphere, secondary (‘induced’) vortices are generated by transforming transverse vorticity into streamwise vorticity as a result of the interaction between the sphere’s separating shear layer and the counter-rotating longitudinal vortices extending downstream from the sphere.
doi_str_mv 10.1017/jfm.2019.250
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221793618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221793618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKs7f0DArTPee9PmsZSiVai46T6EyY1ttTM1mfr4906pq7M4H-fAJ8Q1Qo2A5m6TtjUBupqmcCJGONGuMnoyPRUjAKIKkeBcXJSyAUAFzoyEe-FQ9pm33PayS_Kryz3_yLLiGNftm1y3sl-x_A7vfKiDLLsVZ5ahvxRnKXwUvvrPsVg-PixnT9Xidf48u19UDYK1VWLSSUflUE3ZmqgiNZwMUDRsGg02hcYSu2jVhFJSxMrY6JKNyXLSaixujrO73H3uufR-0-1zOzx6IkLjlEY7ULdHqsldKZmT3-X1NuRfj-APbvzgxh_c-MGN-gMji1Y_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221793618</pqid></control><display><type>article</type><title>Measurement of vortex shedding in the wake of a sphere at</title><source>Cambridge University Press</source><creator>Eshbal, L. ; Rinsky, V. ; David, T. ; Greenblatt, D. ; van Hout, R.</creator><creatorcontrib>Eshbal, L. ; Rinsky, V. ; David, T. ; Greenblatt, D. ; van Hout, R.</creatorcontrib><description>Flow in the wake of a sphere has been studied for at least the last hundred years. The three-dimensional (3-D) flow structure has been observed many times using dye visualization and prior to the direct numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70), its structure at a Reynolds number of approximately 300, was believed to consist of a one-sided chain of hairpin-like vortices. However, the numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70) also showed that so-called ‘induced’ vortices were generated. The present results are the first spatially resolved measurements that elucidate the 3-D vortex shedding cycle in the wake of a sphere at a Reynolds number of 465. Tomographic particle image velocimetry (tomo-PIV) enabled snapshots of the vortical structure and by combining these results with temporally resolved planar PIV, the ensemble averaged shedding cycle in the wake of the sphere was reconstructed. The present results clearly indicate that besides the ‘primary’ vortex chain shed from the sphere, secondary (‘induced’) vortices are generated by transforming transverse vorticity into streamwise vorticity as a result of the interaction between the sphere’s separating shear layer and the counter-rotating longitudinal vortices extending downstream from the sphere.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.250</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Calibration ; Cameras ; Chains ; Computational fluid dynamics ; Computer simulation ; Dyes ; Experiments ; Flow structures ; Flow velocity ; Fluid flow ; Lasers ; Particle image velocimetry ; Reynolds number ; Shear layers ; Three dimensional flow ; Velocity measurement ; Vortex shedding ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2019-07, Vol.870, p.290-315</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63</citedby><cites>FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63</cites><orcidid>0000-0002-0789-5690 ; 0000-0002-4042-7936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eshbal, L.</creatorcontrib><creatorcontrib>Rinsky, V.</creatorcontrib><creatorcontrib>David, T.</creatorcontrib><creatorcontrib>Greenblatt, D.</creatorcontrib><creatorcontrib>van Hout, R.</creatorcontrib><title>Measurement of vortex shedding in the wake of a sphere at</title><title>Journal of fluid mechanics</title><description>Flow in the wake of a sphere has been studied for at least the last hundred years. The three-dimensional (3-D) flow structure has been observed many times using dye visualization and prior to the direct numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70), its structure at a Reynolds number of approximately 300, was believed to consist of a one-sided chain of hairpin-like vortices. However, the numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70) also showed that so-called ‘induced’ vortices were generated. The present results are the first spatially resolved measurements that elucidate the 3-D vortex shedding cycle in the wake of a sphere at a Reynolds number of 465. Tomographic particle image velocimetry (tomo-PIV) enabled snapshots of the vortical structure and by combining these results with temporally resolved planar PIV, the ensemble averaged shedding cycle in the wake of the sphere was reconstructed. The present results clearly indicate that besides the ‘primary’ vortex chain shed from the sphere, secondary (‘induced’) vortices are generated by transforming transverse vorticity into streamwise vorticity as a result of the interaction between the sphere’s separating shear layer and the counter-rotating longitudinal vortices extending downstream from the sphere.</description><subject>Calibration</subject><subject>Cameras</subject><subject>Chains</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dyes</subject><subject>Experiments</subject><subject>Flow structures</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Lasers</subject><subject>Particle image velocimetry</subject><subject>Reynolds number</subject><subject>Shear layers</subject><subject>Three dimensional flow</subject><subject>Velocity measurement</subject><subject>Vortex shedding</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKs7f0DArTPee9PmsZSiVai46T6EyY1ttTM1mfr4906pq7M4H-fAJ8Q1Qo2A5m6TtjUBupqmcCJGONGuMnoyPRUjAKIKkeBcXJSyAUAFzoyEe-FQ9pm33PayS_Kryz3_yLLiGNftm1y3sl-x_A7vfKiDLLsVZ5ahvxRnKXwUvvrPsVg-PixnT9Xidf48u19UDYK1VWLSSUflUE3ZmqgiNZwMUDRsGg02hcYSu2jVhFJSxMrY6JKNyXLSaixujrO73H3uufR-0-1zOzx6IkLjlEY7ULdHqsldKZmT3-X1NuRfj-APbvzgxh_c-MGN-gMji1Y_</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Eshbal, L.</creator><creator>Rinsky, V.</creator><creator>David, T.</creator><creator>Greenblatt, D.</creator><creator>van Hout, R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0789-5690</orcidid><orcidid>https://orcid.org/0000-0002-4042-7936</orcidid></search><sort><creationdate>20190710</creationdate><title>Measurement of vortex shedding in the wake of a sphere at</title><author>Eshbal, L. ; Rinsky, V. ; David, T. ; Greenblatt, D. ; van Hout, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calibration</topic><topic>Cameras</topic><topic>Chains</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dyes</topic><topic>Experiments</topic><topic>Flow structures</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Lasers</topic><topic>Particle image velocimetry</topic><topic>Reynolds number</topic><topic>Shear layers</topic><topic>Three dimensional flow</topic><topic>Velocity measurement</topic><topic>Vortex shedding</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eshbal, L.</creatorcontrib><creatorcontrib>Rinsky, V.</creatorcontrib><creatorcontrib>David, T.</creatorcontrib><creatorcontrib>Greenblatt, D.</creatorcontrib><creatorcontrib>van Hout, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eshbal, L.</au><au>Rinsky, V.</au><au>David, T.</au><au>Greenblatt, D.</au><au>van Hout, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of vortex shedding in the wake of a sphere at</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-07-10</date><risdate>2019</risdate><volume>870</volume><spage>290</spage><epage>315</epage><pages>290-315</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flow in the wake of a sphere has been studied for at least the last hundred years. The three-dimensional (3-D) flow structure has been observed many times using dye visualization and prior to the direct numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70), its structure at a Reynolds number of approximately 300, was believed to consist of a one-sided chain of hairpin-like vortices. However, the numerical simulations by Johnson &amp; Patel ( J. Fluid Mech. , vol. 378, 1999, pp. 19–70) also showed that so-called ‘induced’ vortices were generated. The present results are the first spatially resolved measurements that elucidate the 3-D vortex shedding cycle in the wake of a sphere at a Reynolds number of 465. Tomographic particle image velocimetry (tomo-PIV) enabled snapshots of the vortical structure and by combining these results with temporally resolved planar PIV, the ensemble averaged shedding cycle in the wake of the sphere was reconstructed. The present results clearly indicate that besides the ‘primary’ vortex chain shed from the sphere, secondary (‘induced’) vortices are generated by transforming transverse vorticity into streamwise vorticity as a result of the interaction between the sphere’s separating shear layer and the counter-rotating longitudinal vortices extending downstream from the sphere.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.250</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0789-5690</orcidid><orcidid>https://orcid.org/0000-0002-4042-7936</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-07, Vol.870, p.290-315
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2221793618
source Cambridge University Press
subjects Calibration
Cameras
Chains
Computational fluid dynamics
Computer simulation
Dyes
Experiments
Flow structures
Flow velocity
Fluid flow
Lasers
Particle image velocimetry
Reynolds number
Shear layers
Three dimensional flow
Velocity measurement
Vortex shedding
Vortices
Vorticity
title Measurement of vortex shedding in the wake of a sphere at
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20vortex%20shedding%20in%20the%20wake%20of%20a%20sphere%20at&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Eshbal,%20L.&rft.date=2019-07-10&rft.volume=870&rft.spage=290&rft.epage=315&rft.pages=290-315&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.250&rft_dat=%3Cproquest_cross%3E2221793618%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1088-fe26f6d39135e87d3d2cef702d7e7c608fac82e9d8342ff32e378d9f8df8ef63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2221793618&rft_id=info:pmid/&rfr_iscdi=true