Loading…

Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro

Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of mic...

Full description

Saved in:
Bibliographic Details
Published in:Archives of toxicology 2019-07, Vol.93 (7), p.2007-2019
Main Authors: Zong, Cai, Hasegawa, Rieka, Urushitani, Makoto, Zhang, Lingyi, Nagashima, Daichi, Sakurai, Toshihiro, Ichihara, Sahoko, Ohsako, Seiichiroh, Ichihara, Gaku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513
cites cdi_FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513
container_end_page 2019
container_issue 7
container_start_page 2007
container_title Archives of toxicology
container_volume 93
creator Zong, Cai
Hasegawa, Rieka
Urushitani, Makoto
Zhang, Lingyi
Nagashima, Daichi
Sakurai, Toshihiro
Ichihara, Sahoko
Ohsako, Seiichiroh
Ichihara, Gaku
description Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0–36 h; 50 μM) and dose- (0–500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.
doi_str_mv 10.1007/s00204-019-02471-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222336134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222336134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7rr6BTxIwXN0Jknb7VEW_4EgiJ5DmqRLlrZZ03Zxv73Z7ao3c5kw83tvmEfIJcINAuS3HQADQQELCkzkSOGITFFwRiHn82MyBS6ApnmGE3LWdSsAZPOCn5IJx0hkLJ2S5ZuvbeKrpHE6-GXtVJ0o3buN6p1vE9WapLVD8K6tatU0Y9e1Y7P3X067frvTKx22kXDG7sYbt_F78f7fB39OTipVd_biUGfk4-H-ffFEX14fnxd3L1QLgT3NFM8ZlhpTazUvtDIKCitSznRqLAgBWKJAyIpSF_MCUgNznlpjFILAFPmMXI--6-A_B9v1cuWH0MaVksXHeYZcRIqNVLy564Kt5Dq4RoWtRJC7bOWYrYzZyn22EqLo6mA9lI01v5KfMCPAR6CLo3Zpw9_uf2y_AUq2hNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222336134</pqid></control><display><type>article</type><title>Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro</title><source>Springer Nature</source><creator>Zong, Cai ; Hasegawa, Rieka ; Urushitani, Makoto ; Zhang, Lingyi ; Nagashima, Daichi ; Sakurai, Toshihiro ; Ichihara, Sahoko ; Ohsako, Seiichiroh ; Ichihara, Gaku</creator><creatorcontrib>Zong, Cai ; Hasegawa, Rieka ; Urushitani, Makoto ; Zhang, Lingyi ; Nagashima, Daichi ; Sakurai, Toshihiro ; Ichihara, Sahoko ; Ohsako, Seiichiroh ; Ichihara, Gaku</creatorcontrib><description>Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0–36 h; 50 μM) and dose- (0–500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.</description><identifier>ISSN: 0340-5761</identifier><identifier>EISSN: 1432-0738</identifier><identifier>DOI: 10.1007/s00204-019-02471-0</identifier><identifier>PMID: 31073625</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acrylamide ; Activation ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Caspase ; Caspase-1 ; CD11b antigen ; CD40 antigen ; Cerebral cortex ; Cytokines ; Environmental Health ; Food contamination ; Gene expression ; IL-1β ; Inflammasomes ; Inflammation ; Inflammatory response ; Interleukin 18 ; Interleukin 6 ; Microglia ; Microglial cells ; Neurodegenerative diseases ; Neurological diseases ; Neurotoxicity ; Nitric-oxide synthase ; Occupational Medicine/Industrial Medicine ; Organ Toxicity and Mechanisms ; Pharmacology/Toxicology ; Rodents</subject><ispartof>Archives of toxicology, 2019-07, Vol.93 (7), p.2007-2019</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Archives of Toxicology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513</citedby><cites>FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31073625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zong, Cai</creatorcontrib><creatorcontrib>Hasegawa, Rieka</creatorcontrib><creatorcontrib>Urushitani, Makoto</creatorcontrib><creatorcontrib>Zhang, Lingyi</creatorcontrib><creatorcontrib>Nagashima, Daichi</creatorcontrib><creatorcontrib>Sakurai, Toshihiro</creatorcontrib><creatorcontrib>Ichihara, Sahoko</creatorcontrib><creatorcontrib>Ohsako, Seiichiroh</creatorcontrib><creatorcontrib>Ichihara, Gaku</creatorcontrib><title>Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro</title><title>Archives of toxicology</title><addtitle>Arch Toxicol</addtitle><addtitle>Arch Toxicol</addtitle><description>Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0–36 h; 50 μM) and dose- (0–500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.</description><subject>Acrylamide</subject><subject>Activation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Caspase</subject><subject>Caspase-1</subject><subject>CD11b antigen</subject><subject>CD40 antigen</subject><subject>Cerebral cortex</subject><subject>Cytokines</subject><subject>Environmental Health</subject><subject>Food contamination</subject><subject>Gene expression</subject><subject>IL-1β</subject><subject>Inflammasomes</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Interleukin 18</subject><subject>Interleukin 6</subject><subject>Microglia</subject><subject>Microglial cells</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurotoxicity</subject><subject>Nitric-oxide synthase</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Organ Toxicity and Mechanisms</subject><subject>Pharmacology/Toxicology</subject><subject>Rodents</subject><issn>0340-5761</issn><issn>1432-0738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMo7rr6BTxIwXN0Jknb7VEW_4EgiJ5DmqRLlrZZ03Zxv73Z7ao3c5kw83tvmEfIJcINAuS3HQADQQELCkzkSOGITFFwRiHn82MyBS6ApnmGE3LWdSsAZPOCn5IJx0hkLJ2S5ZuvbeKrpHE6-GXtVJ0o3buN6p1vE9WapLVD8K6tatU0Y9e1Y7P3X067frvTKx22kXDG7sYbt_F78f7fB39OTipVd_biUGfk4-H-ffFEX14fnxd3L1QLgT3NFM8ZlhpTazUvtDIKCitSznRqLAgBWKJAyIpSF_MCUgNznlpjFILAFPmMXI--6-A_B9v1cuWH0MaVksXHeYZcRIqNVLy564Kt5Dq4RoWtRJC7bOWYrYzZyn22EqLo6mA9lI01v5KfMCPAR6CLo3Zpw9_uf2y_AUq2hNE</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Zong, Cai</creator><creator>Hasegawa, Rieka</creator><creator>Urushitani, Makoto</creator><creator>Zhang, Lingyi</creator><creator>Nagashima, Daichi</creator><creator>Sakurai, Toshihiro</creator><creator>Ichihara, Sahoko</creator><creator>Ohsako, Seiichiroh</creator><creator>Ichihara, Gaku</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190701</creationdate><title>Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro</title><author>Zong, Cai ; Hasegawa, Rieka ; Urushitani, Makoto ; Zhang, Lingyi ; Nagashima, Daichi ; Sakurai, Toshihiro ; Ichihara, Sahoko ; Ohsako, Seiichiroh ; Ichihara, Gaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acrylamide</topic><topic>Activation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Caspase</topic><topic>Caspase-1</topic><topic>CD11b antigen</topic><topic>CD40 antigen</topic><topic>Cerebral cortex</topic><topic>Cytokines</topic><topic>Environmental Health</topic><topic>Food contamination</topic><topic>Gene expression</topic><topic>IL-1β</topic><topic>Inflammasomes</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Interleukin 18</topic><topic>Interleukin 6</topic><topic>Microglia</topic><topic>Microglial cells</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurotoxicity</topic><topic>Nitric-oxide synthase</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Organ Toxicity and Mechanisms</topic><topic>Pharmacology/Toxicology</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Cai</creatorcontrib><creatorcontrib>Hasegawa, Rieka</creatorcontrib><creatorcontrib>Urushitani, Makoto</creatorcontrib><creatorcontrib>Zhang, Lingyi</creatorcontrib><creatorcontrib>Nagashima, Daichi</creatorcontrib><creatorcontrib>Sakurai, Toshihiro</creatorcontrib><creatorcontrib>Ichihara, Sahoko</creatorcontrib><creatorcontrib>Ohsako, Seiichiroh</creatorcontrib><creatorcontrib>Ichihara, Gaku</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Archives of toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zong, Cai</au><au>Hasegawa, Rieka</au><au>Urushitani, Makoto</au><au>Zhang, Lingyi</au><au>Nagashima, Daichi</au><au>Sakurai, Toshihiro</au><au>Ichihara, Sahoko</au><au>Ohsako, Seiichiroh</au><au>Ichihara, Gaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro</atitle><jtitle>Archives of toxicology</jtitle><stitle>Arch Toxicol</stitle><addtitle>Arch Toxicol</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>93</volume><issue>7</issue><spage>2007</spage><epage>2019</epage><pages>2007-2019</pages><issn>0340-5761</issn><eissn>1432-0738</eissn><abstract>Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0–36 h; 50 μM) and dose- (0–500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31073625</pmid><doi>10.1007/s00204-019-02471-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-5761
ispartof Archives of toxicology, 2019-07, Vol.93 (7), p.2007-2019
issn 0340-5761
1432-0738
language eng
recordid cdi_proquest_journals_2222336134
source Springer Nature
subjects Acrylamide
Activation
Biomedical and Life Sciences
Biomedicine
Brain
Caspase
Caspase-1
CD11b antigen
CD40 antigen
Cerebral cortex
Cytokines
Environmental Health
Food contamination
Gene expression
IL-1β
Inflammasomes
Inflammation
Inflammatory response
Interleukin 18
Interleukin 6
Microglia
Microglial cells
Neurodegenerative diseases
Neurological diseases
Neurotoxicity
Nitric-oxide synthase
Occupational Medicine/Industrial Medicine
Organ Toxicity and Mechanisms
Pharmacology/Toxicology
Rodents
title Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20microglial%20activation%20and%20neuroinflammation%20in%20neurotoxicity%20of%20acrylamide%20in%20vivo%20and%20in%20vitro&rft.jtitle=Archives%20of%20toxicology&rft.au=Zong,%20Cai&rft.date=2019-07-01&rft.volume=93&rft.issue=7&rft.spage=2007&rft.epage=2019&rft.pages=2007-2019&rft.issn=0340-5761&rft.eissn=1432-0738&rft_id=info:doi/10.1007/s00204-019-02471-0&rft_dat=%3Cproquest_cross%3E2222336134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-6a3721bc15eec39cada09e4532c5de04401b141069bc98905d0835edda1041513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222336134&rft_id=info:pmid/31073625&rfr_iscdi=true