Loading…
OpenEDS: Open Eye Dataset
We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This dataset is compiled from video capture of the eye-regio...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Garbin, Stephan J Shen, Yiru Schuetz, Immo Cavin, Robert Hughes, Gregory Talathi, Sachin S |
description | We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This dataset is compiled from video capture of the eye-region collected from 152 individual participants and is divided into four subsets: (i) 12,759 images with pixel-level annotations for key eye-regions: iris, pupil and sclera (ii) 252,690 unlabelled eye-images, (iii) 91,200 frames from randomly selected video sequence of 1.5 seconds in duration and (iv) 143 pairs of left and right point cloud data compiled from corneal topography of eye regions collected from a subset, 143 out of 152, participants in the study. A baseline experiment has been evaluated on OpenEDS for the task of semantic segmentation of pupil, iris, sclera and background, with the mean intersectionover-union (mIoU) of 98.3 %. We anticipate that OpenEDS will create opportunities to researchers in the eye tracking community and the broader machine learning and computer vision community to advance the state of eye-tracking for VR applications. The dataset is available for download upon request at https://research.fb.com/programs/openeds-challenge |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2222823357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222823357</sourcerecordid><originalsourceid>FETCH-proquest_journals_22228233573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9C9IzXN1CbZSADEUXCtTFVwSSxKLU0t4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreCAgsgJaYmhsTpwoAI-wpaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222823357</pqid></control><display><type>article</type><title>OpenEDS: Open Eye Dataset</title><source>Publicly Available Content Database</source><creator>Garbin, Stephan J ; Shen, Yiru ; Schuetz, Immo ; Cavin, Robert ; Hughes, Gregory ; Talathi, Sachin S</creator><creatorcontrib>Garbin, Stephan J ; Shen, Yiru ; Schuetz, Immo ; Cavin, Robert ; Hughes, Gregory ; Talathi, Sachin S</creatorcontrib><description>We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This dataset is compiled from video capture of the eye-region collected from 152 individual participants and is divided into four subsets: (i) 12,759 images with pixel-level annotations for key eye-regions: iris, pupil and sclera (ii) 252,690 unlabelled eye-images, (iii) 91,200 frames from randomly selected video sequence of 1.5 seconds in duration and (iv) 143 pairs of left and right point cloud data compiled from corneal topography of eye regions collected from a subset, 143 out of 152, participants in the study. A baseline experiment has been evaluated on OpenEDS for the task of semantic segmentation of pupil, iris, sclera and background, with the mean intersectionover-union (mIoU) of 98.3 %. We anticipate that OpenEDS will create opportunities to researchers in the eye tracking community and the broader machine learning and computer vision community to advance the state of eye-tracking for VR applications. The dataset is available for download upon request at https://research.fb.com/programs/openeds-challenge</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Communities ; Computer vision ; Datasets ; Downloading ; Helmet mounted displays ; Image annotation ; Image segmentation ; Machine learning ; Tracking ; Virtual reality</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2222823357?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Garbin, Stephan J</creatorcontrib><creatorcontrib>Shen, Yiru</creatorcontrib><creatorcontrib>Schuetz, Immo</creatorcontrib><creatorcontrib>Cavin, Robert</creatorcontrib><creatorcontrib>Hughes, Gregory</creatorcontrib><creatorcontrib>Talathi, Sachin S</creatorcontrib><title>OpenEDS: Open Eye Dataset</title><title>arXiv.org</title><description>We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This dataset is compiled from video capture of the eye-region collected from 152 individual participants and is divided into four subsets: (i) 12,759 images with pixel-level annotations for key eye-regions: iris, pupil and sclera (ii) 252,690 unlabelled eye-images, (iii) 91,200 frames from randomly selected video sequence of 1.5 seconds in duration and (iv) 143 pairs of left and right point cloud data compiled from corneal topography of eye regions collected from a subset, 143 out of 152, participants in the study. A baseline experiment has been evaluated on OpenEDS for the task of semantic segmentation of pupil, iris, sclera and background, with the mean intersectionover-union (mIoU) of 98.3 %. We anticipate that OpenEDS will create opportunities to researchers in the eye tracking community and the broader machine learning and computer vision community to advance the state of eye-tracking for VR applications. The dataset is available for download upon request at https://research.fb.com/programs/openeds-challenge</description><subject>Communities</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Downloading</subject><subject>Helmet mounted displays</subject><subject>Image annotation</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Tracking</subject><subject>Virtual reality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9C9IzXN1CbZSADEUXCtTFVwSSxKLU0t4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreCAgsgJaYmhsTpwoAI-wpaQ</recordid><startdate>20190517</startdate><enddate>20190517</enddate><creator>Garbin, Stephan J</creator><creator>Shen, Yiru</creator><creator>Schuetz, Immo</creator><creator>Cavin, Robert</creator><creator>Hughes, Gregory</creator><creator>Talathi, Sachin S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190517</creationdate><title>OpenEDS: Open Eye Dataset</title><author>Garbin, Stephan J ; Shen, Yiru ; Schuetz, Immo ; Cavin, Robert ; Hughes, Gregory ; Talathi, Sachin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22228233573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Communities</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Downloading</topic><topic>Helmet mounted displays</topic><topic>Image annotation</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Tracking</topic><topic>Virtual reality</topic><toplevel>online_resources</toplevel><creatorcontrib>Garbin, Stephan J</creatorcontrib><creatorcontrib>Shen, Yiru</creatorcontrib><creatorcontrib>Schuetz, Immo</creatorcontrib><creatorcontrib>Cavin, Robert</creatorcontrib><creatorcontrib>Hughes, Gregory</creatorcontrib><creatorcontrib>Talathi, Sachin S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garbin, Stephan J</au><au>Shen, Yiru</au><au>Schuetz, Immo</au><au>Cavin, Robert</au><au>Hughes, Gregory</au><au>Talathi, Sachin S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>OpenEDS: Open Eye Dataset</atitle><jtitle>arXiv.org</jtitle><date>2019-05-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a large scale data set, OpenEDS: Open Eye Dataset, of eye-images captured using a virtual-reality (VR) head mounted display mounted with two synchronized eyefacing cameras at a frame rate of 200 Hz under controlled illumination. This dataset is compiled from video capture of the eye-region collected from 152 individual participants and is divided into four subsets: (i) 12,759 images with pixel-level annotations for key eye-regions: iris, pupil and sclera (ii) 252,690 unlabelled eye-images, (iii) 91,200 frames from randomly selected video sequence of 1.5 seconds in duration and (iv) 143 pairs of left and right point cloud data compiled from corneal topography of eye regions collected from a subset, 143 out of 152, participants in the study. A baseline experiment has been evaluated on OpenEDS for the task of semantic segmentation of pupil, iris, sclera and background, with the mean intersectionover-union (mIoU) of 98.3 %. We anticipate that OpenEDS will create opportunities to researchers in the eye tracking community and the broader machine learning and computer vision community to advance the state of eye-tracking for VR applications. The dataset is available for download upon request at https://research.fb.com/programs/openeds-challenge</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2222823357 |
source | Publicly Available Content Database |
subjects | Communities Computer vision Datasets Downloading Helmet mounted displays Image annotation Image segmentation Machine learning Tracking Virtual reality |
title | OpenEDS: Open Eye Dataset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=OpenEDS:%20Open%20Eye%20Dataset&rft.jtitle=arXiv.org&rft.au=Garbin,%20Stephan%20J&rft.date=2019-05-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2222823357%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22228233573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222823357&rft_id=info:pmid/&rfr_iscdi=true |