Loading…
An Improved Algorithm for Power Distribution System Restoration Using Microgrids for Enhancing Grid Resiliency
Smart grid utilities all over the world aim at providing reliable and resilient power to its customers. Microgrids play a vital role in delivering resilient and reliable supply during major contingencies due to natural disasters. The resiliency of the power network is attributed to three features vi...
Saved in:
Published in: | Electric power components and systems 2018-10, Vol.46 (16-17), p.1731-1743 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Smart grid utilities all over the world aim at providing reliable and resilient power to its customers. Microgrids play a vital role in delivering resilient and reliable supply during major contingencies due to natural disasters. The resiliency of the power network is attributed to three features viz. prevention, survivability, and recovery. The improvement in any or all of these improves the overall resiliency of the system. This article presents an improved distribution system restoration algorithm, with microgrids for enhancing the survivability of out of service loads due to extreme events, like natural disasters. An optimal strategy to restore maximum loads with minimal switching operations under single and multiple fault conditions is proposed. Performance of the algorithm is tested on a modified IEEE 37-node system, and the results are compared with reported works. Moreover, a typical case study of a natural disaster due to Cyclone Roanu is considered, and the efficacy of the proposed algorithm is assessed. |
---|---|
ISSN: | 1532-5008 1532-5016 |
DOI: | 10.1080/15325008.2018.1527868 |