Loading…

Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective

Based on the dynamic characteristics of enterprises’ competition and cooperation, this paper introduces the idea of ecology and synergy and constructs a dynamic coevolution model of financing allocation efficiency and financing niche based on improved Lotka-Volterra model. The parameters in the mode...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-9
Main Authors: Wang, Qiong, E, Hai-tao, Geng, Cheng-xuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573
cites cdi_FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573
container_end_page 9
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Wang, Qiong
E, Hai-tao
Geng, Cheng-xuan
description Based on the dynamic characteristics of enterprises’ competition and cooperation, this paper introduces the idea of ecology and synergy and constructs a dynamic coevolution model of financing allocation efficiency and financing niche based on improved Lotka-Volterra model. The parameters in the model are difficult to be given by the least square method and the maximum likelihood estimation method; the accelerated genetic algorithm is proposed to solve the parameters in the dynamic coevolution model, which makes the parameter estimation more accurate and reasonable. Finally, the data of new energy vehicle listed companies in China from 2009 to 2017 are given to validate the proposed model, and the dynamic process of coevolution of new energy vehicle enterprises, capital allocation efficiency, and financing niche is described. The results show that the minimum financing niche breadth of industry and market determines the location of the equilibrium point. With capital allocation efficiency as the core, adjusting the financing niche through financing market, industrial policy, enterprise development, and other factors will help to improve the coevolution balance between industrial capital allocation efficiency and financing niche and promote the coordinated development of strategic emerging industries.
doi_str_mv 10.1155/2019/1412950
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2223751415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2223751415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuBFFKzVm2cJeNTVfGy6u8dSWxVK9aDibclOJzayTWqybdl_b2oFj54yGR5mmDdJzhm9YUzKW05ZecsyxktJD5IekwORSpblh7GmPEsZF-_HyUkIn5RyJlnRS7Z3nVVLA2TkcOOadWucJU6TkVqZVjVk2DQO1E93rLUBgxa6HZjhlowt-o-OvOHCQIPx26JfeRMwEO3dkkyMVRaM_SAzAwskz-jDCqE1GzxNjrRqAp79vv3kdTJ-GT2k06f7x9FwmoIY0DYtCq2yQueCcyrVYE7rMoeCATIBSKmq63jJoNQSJBRQ5yUVkNUSdaFlQWUu-snlfu7Ku681hrb6dGtv48qKcy7yGA-TUV3vFXgXgkddxTOWyncVo9Uu2moXbfUbbeRXe74wdq625j99sdcYDWr1p1mZCS7EN4nQgyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2223751415</pqid></control><display><type>article</type><title>Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wang, Qiong ; E, Hai-tao ; Geng, Cheng-xuan</creator><contributor>Karamanos, Konstantinos ; Konstantinos Karamanos</contributor><creatorcontrib>Wang, Qiong ; E, Hai-tao ; Geng, Cheng-xuan ; Karamanos, Konstantinos ; Konstantinos Karamanos</creatorcontrib><description>Based on the dynamic characteristics of enterprises’ competition and cooperation, this paper introduces the idea of ecology and synergy and constructs a dynamic coevolution model of financing allocation efficiency and financing niche based on improved Lotka-Volterra model. The parameters in the model are difficult to be given by the least square method and the maximum likelihood estimation method; the accelerated genetic algorithm is proposed to solve the parameters in the dynamic coevolution model, which makes the parameter estimation more accurate and reasonable. Finally, the data of new energy vehicle listed companies in China from 2009 to 2017 are given to validate the proposed model, and the dynamic process of coevolution of new energy vehicle enterprises, capital allocation efficiency, and financing niche is described. The results show that the minimum financing niche breadth of industry and market determines the location of the equilibrium point. With capital allocation efficiency as the core, adjusting the financing niche through financing market, industrial policy, enterprise development, and other factors will help to improve the coevolution balance between industrial capital allocation efficiency and financing niche and promote the coordinated development of strategic emerging industries.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/1412950</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Data analysis ; Dynamic characteristics ; Ecology ; Economic development ; Ecosystem biology ; Ecosystems ; Efficiency ; Engineering ; Financing ; GDP ; Genetic algorithms ; Gross Domestic Product ; Growth rate ; Industrial production ; Market shares ; Markets ; Mathematical models ; Mathematical problems ; Maximum likelihood estimation ; Operating revenue ; Organisms ; Parameter estimation ; Power efficiency ; Silicon wafers ; Studies ; Venture capital</subject><ispartof>Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-9</ispartof><rights>Copyright © 2019 Qiong Wang et al.</rights><rights>Copyright © 2019 Qiong Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573</citedby><cites>FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573</cites><orcidid>0000-0001-7466-8482 ; 0000-0001-6796-7521 ; 0000-0002-4589-797X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2223751415/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2223751415?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Karamanos, Konstantinos</contributor><contributor>Konstantinos Karamanos</contributor><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>E, Hai-tao</creatorcontrib><creatorcontrib>Geng, Cheng-xuan</creatorcontrib><title>Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective</title><title>Mathematical problems in engineering</title><description>Based on the dynamic characteristics of enterprises’ competition and cooperation, this paper introduces the idea of ecology and synergy and constructs a dynamic coevolution model of financing allocation efficiency and financing niche based on improved Lotka-Volterra model. The parameters in the model are difficult to be given by the least square method and the maximum likelihood estimation method; the accelerated genetic algorithm is proposed to solve the parameters in the dynamic coevolution model, which makes the parameter estimation more accurate and reasonable. Finally, the data of new energy vehicle listed companies in China from 2009 to 2017 are given to validate the proposed model, and the dynamic process of coevolution of new energy vehicle enterprises, capital allocation efficiency, and financing niche is described. The results show that the minimum financing niche breadth of industry and market determines the location of the equilibrium point. With capital allocation efficiency as the core, adjusting the financing niche through financing market, industrial policy, enterprise development, and other factors will help to improve the coevolution balance between industrial capital allocation efficiency and financing niche and promote the coordinated development of strategic emerging industries.</description><subject>Data analysis</subject><subject>Dynamic characteristics</subject><subject>Ecology</subject><subject>Economic development</subject><subject>Ecosystem biology</subject><subject>Ecosystems</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Financing</subject><subject>GDP</subject><subject>Genetic algorithms</subject><subject>Gross Domestic Product</subject><subject>Growth rate</subject><subject>Industrial production</subject><subject>Market shares</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Maximum likelihood estimation</subject><subject>Operating revenue</subject><subject>Organisms</subject><subject>Parameter estimation</subject><subject>Power efficiency</subject><subject>Silicon wafers</subject><subject>Studies</subject><subject>Venture capital</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1LAzEQBuBFFKzVm2cJeNTVfGy6u8dSWxVK9aDibclOJzayTWqybdl_b2oFj54yGR5mmDdJzhm9YUzKW05ZecsyxktJD5IekwORSpblh7GmPEsZF-_HyUkIn5RyJlnRS7Z3nVVLA2TkcOOadWucJU6TkVqZVjVk2DQO1E93rLUBgxa6HZjhlowt-o-OvOHCQIPx26JfeRMwEO3dkkyMVRaM_SAzAwskz-jDCqE1GzxNjrRqAp79vv3kdTJ-GT2k06f7x9FwmoIY0DYtCq2yQueCcyrVYE7rMoeCATIBSKmq63jJoNQSJBRQ5yUVkNUSdaFlQWUu-snlfu7Ku681hrb6dGtv48qKcy7yGA-TUV3vFXgXgkddxTOWyncVo9Uu2moXbfUbbeRXe74wdq625j99sdcYDWr1p1mZCS7EN4nQgyw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Qiong</creator><creator>E, Hai-tao</creator><creator>Geng, Cheng-xuan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7466-8482</orcidid><orcidid>https://orcid.org/0000-0001-6796-7521</orcidid><orcidid>https://orcid.org/0000-0002-4589-797X</orcidid></search><sort><creationdate>20190101</creationdate><title>Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective</title><author>Wang, Qiong ; E, Hai-tao ; Geng, Cheng-xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Dynamic characteristics</topic><topic>Ecology</topic><topic>Economic development</topic><topic>Ecosystem biology</topic><topic>Ecosystems</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Financing</topic><topic>GDP</topic><topic>Genetic algorithms</topic><topic>Gross Domestic Product</topic><topic>Growth rate</topic><topic>Industrial production</topic><topic>Market shares</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Maximum likelihood estimation</topic><topic>Operating revenue</topic><topic>Organisms</topic><topic>Parameter estimation</topic><topic>Power efficiency</topic><topic>Silicon wafers</topic><topic>Studies</topic><topic>Venture capital</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>E, Hai-tao</creatorcontrib><creatorcontrib>Geng, Cheng-xuan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiong</au><au>E, Hai-tao</au><au>Geng, Cheng-xuan</au><au>Karamanos, Konstantinos</au><au>Konstantinos Karamanos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Based on the dynamic characteristics of enterprises’ competition and cooperation, this paper introduces the idea of ecology and synergy and constructs a dynamic coevolution model of financing allocation efficiency and financing niche based on improved Lotka-Volterra model. The parameters in the model are difficult to be given by the least square method and the maximum likelihood estimation method; the accelerated genetic algorithm is proposed to solve the parameters in the dynamic coevolution model, which makes the parameter estimation more accurate and reasonable. Finally, the data of new energy vehicle listed companies in China from 2009 to 2017 are given to validate the proposed model, and the dynamic process of coevolution of new energy vehicle enterprises, capital allocation efficiency, and financing niche is described. The results show that the minimum financing niche breadth of industry and market determines the location of the equilibrium point. With capital allocation efficiency as the core, adjusting the financing niche through financing market, industrial policy, enterprise development, and other factors will help to improve the coevolution balance between industrial capital allocation efficiency and financing niche and promote the coordinated development of strategic emerging industries.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/1412950</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7466-8482</orcidid><orcidid>https://orcid.org/0000-0001-6796-7521</orcidid><orcidid>https://orcid.org/0000-0002-4589-797X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019-01, Vol.2019 (2019), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2223751415
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Data analysis
Dynamic characteristics
Ecology
Economic development
Ecosystem biology
Ecosystems
Efficiency
Engineering
Financing
GDP
Genetic algorithms
Gross Domestic Product
Growth rate
Industrial production
Market shares
Markets
Mathematical models
Mathematical problems
Maximum likelihood estimation
Operating revenue
Organisms
Parameter estimation
Power efficiency
Silicon wafers
Studies
Venture capital
title Dynamic Coevolution of Capital Allocation Efficiency of New Energy Vehicle Enterprises from Financing Niche Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Coevolution%20of%20Capital%20Allocation%20Efficiency%20of%20New%20Energy%20Vehicle%20Enterprises%20from%20Financing%20Niche%20Perspective&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Qiong&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/1412950&rft_dat=%3Cproquest_cross%3E2223751415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-88fa48f732205a6d0b97c81ce13ce00abb00269f5c5c8cb7903c4b5ef8f580573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2223751415&rft_id=info:pmid/&rfr_iscdi=true