Loading…

Filtered instanton Floer homology and the homology cobordism group

For any \(s \in [-\infty, 0] \) and oriented homology 3-sphere \(Y\), we introduce a homology cobordism invariant \(r_s(Y)\in (0,\infty]\). The values \(\{r_s(Y)\}\) are included in the critical values of the \(SU(2)\)-Chern-Simons functional of \(Y\), and we show a negative definite cobordism inequ...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Nozaki, Yuta, Sato, Kouki, Taniguchi, Masaki
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nozaki, Yuta
Sato, Kouki
Taniguchi, Masaki
description For any \(s \in [-\infty, 0] \) and oriented homology 3-sphere \(Y\), we introduce a homology cobordism invariant \(r_s(Y)\in (0,\infty]\). The values \(\{r_s(Y)\}\) are included in the critical values of the \(SU(2)\)-Chern-Simons functional of \(Y\), and we show a negative definite cobordism inequality and a connected sum formula for \(r_s\). As applications, we obtain several new results on the homology cobordism group. First, we give infinitely many homology 3-spheres which cannot bound any definite 4-manifold. Next, we show that if the 1-surgery of \(S^3\) along a knot has the Frøyshov invariant negative, then all positive \(1/n\)-surgeries along the knot are linearly independent in the homology cobordism group. In another direction, we use \(\{r_s\}\) to define a filtration on the homology cobordism group which is parametrized by \([0,\infty]\). Moreover, we compute an approximate value of \(r_s\) for the hyperbolic 3-manifold obtained by \(1/2\)-surgery along the mirror of the knot \(5_2\).
doi_str_mv 10.48550/arxiv.1905.04001
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224154428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224154428</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-6e741353d3aba1d7c8d37396fa81d9a9877ee1dbbd5f57b4596bb54f33f218003</originalsourceid><addsrcrecordid>eNpFjcFKAzEUAIMgWGo_wFvA8655eXmb5KjFqlDw0ntJmmy7Zbupya7o3yso9DQwhxnG7kDUyhCJB5e_us8arKBaKCHgis0kIlRGSXnDFqUchRCy0ZIIZ-xp1fVjzDHwbiijG8Y08FWfYuaHdEp92n9zNwQ-HuJF7JJPOXTlxPc5Tedbdt26vsTFP-dss3reLF-r9fvL2_JxXTlLUDVRK0DCgM47CHpnAmq0TesMBOus0TpGCN4Hakl7RbbxnlSL2EowQuCc3f9lzzl9TLGM22Oa8vB73EopFZBS0uAPavBL3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224154428</pqid></control><display><type>article</type><title>Filtered instanton Floer homology and the homology cobordism group</title><source>Publicly Available Content Database</source><creator>Nozaki, Yuta ; Sato, Kouki ; Taniguchi, Masaki</creator><creatorcontrib>Nozaki, Yuta ; Sato, Kouki ; Taniguchi, Masaki</creatorcontrib><description>For any \(s \in [-\infty, 0] \) and oriented homology 3-sphere \(Y\), we introduce a homology cobordism invariant \(r_s(Y)\in (0,\infty]\). The values \(\{r_s(Y)\}\) are included in the critical values of the \(SU(2)\)-Chern-Simons functional of \(Y\), and we show a negative definite cobordism inequality and a connected sum formula for \(r_s\). As applications, we obtain several new results on the homology cobordism group. First, we give infinitely many homology 3-spheres which cannot bound any definite 4-manifold. Next, we show that if the 1-surgery of \(S^3\) along a knot has the Frøyshov invariant negative, then all positive \(1/n\)-surgeries along the knot are linearly independent in the homology cobordism group. In another direction, we use \(\{r_s\}\) to define a filtration on the homology cobordism group which is parametrized by \([0,\infty]\). Moreover, we compute an approximate value of \(r_s\) for the hyperbolic 3-manifold obtained by \(1/2\)-surgery along the mirror of the knot \(5_2\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.04001</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Invariants ; Surgery</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2224154428?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Nozaki, Yuta</creatorcontrib><creatorcontrib>Sato, Kouki</creatorcontrib><creatorcontrib>Taniguchi, Masaki</creatorcontrib><title>Filtered instanton Floer homology and the homology cobordism group</title><title>arXiv.org</title><description>For any \(s \in [-\infty, 0] \) and oriented homology 3-sphere \(Y\), we introduce a homology cobordism invariant \(r_s(Y)\in (0,\infty]\). The values \(\{r_s(Y)\}\) are included in the critical values of the \(SU(2)\)-Chern-Simons functional of \(Y\), and we show a negative definite cobordism inequality and a connected sum formula for \(r_s\). As applications, we obtain several new results on the homology cobordism group. First, we give infinitely many homology 3-spheres which cannot bound any definite 4-manifold. Next, we show that if the 1-surgery of \(S^3\) along a knot has the Frøyshov invariant negative, then all positive \(1/n\)-surgeries along the knot are linearly independent in the homology cobordism group. In another direction, we use \(\{r_s\}\) to define a filtration on the homology cobordism group which is parametrized by \([0,\infty]\). Moreover, we compute an approximate value of \(r_s\) for the hyperbolic 3-manifold obtained by \(1/2\)-surgery along the mirror of the knot \(5_2\).</description><subject>Homology</subject><subject>Invariants</subject><subject>Surgery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFjcFKAzEUAIMgWGo_wFvA8655eXmb5KjFqlDw0ntJmmy7Zbupya7o3yso9DQwhxnG7kDUyhCJB5e_us8arKBaKCHgis0kIlRGSXnDFqUchRCy0ZIIZ-xp1fVjzDHwbiijG8Y08FWfYuaHdEp92n9zNwQ-HuJF7JJPOXTlxPc5Tedbdt26vsTFP-dss3reLF-r9fvL2_JxXTlLUDVRK0DCgM47CHpnAmq0TesMBOus0TpGCN4Hakl7RbbxnlSL2EowQuCc3f9lzzl9TLGM22Oa8vB73EopFZBS0uAPavBL3g</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Nozaki, Yuta</creator><creator>Sato, Kouki</creator><creator>Taniguchi, Masaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220126</creationdate><title>Filtered instanton Floer homology and the homology cobordism group</title><author>Nozaki, Yuta ; Sato, Kouki ; Taniguchi, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-6e741353d3aba1d7c8d37396fa81d9a9877ee1dbbd5f57b4596bb54f33f218003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Homology</topic><topic>Invariants</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Nozaki, Yuta</creatorcontrib><creatorcontrib>Sato, Kouki</creatorcontrib><creatorcontrib>Taniguchi, Masaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozaki, Yuta</au><au>Sato, Kouki</au><au>Taniguchi, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filtered instanton Floer homology and the homology cobordism group</atitle><jtitle>arXiv.org</jtitle><date>2022-01-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For any \(s \in [-\infty, 0] \) and oriented homology 3-sphere \(Y\), we introduce a homology cobordism invariant \(r_s(Y)\in (0,\infty]\). The values \(\{r_s(Y)\}\) are included in the critical values of the \(SU(2)\)-Chern-Simons functional of \(Y\), and we show a negative definite cobordism inequality and a connected sum formula for \(r_s\). As applications, we obtain several new results on the homology cobordism group. First, we give infinitely many homology 3-spheres which cannot bound any definite 4-manifold. Next, we show that if the 1-surgery of \(S^3\) along a knot has the Frøyshov invariant negative, then all positive \(1/n\)-surgeries along the knot are linearly independent in the homology cobordism group. In another direction, we use \(\{r_s\}\) to define a filtration on the homology cobordism group which is parametrized by \([0,\infty]\). Moreover, we compute an approximate value of \(r_s\) for the hyperbolic 3-manifold obtained by \(1/2\)-surgery along the mirror of the knot \(5_2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.04001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2224154428
source Publicly Available Content Database
subjects Homology
Invariants
Surgery
title Filtered instanton Floer homology and the homology cobordism group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filtered%20instanton%20Floer%20homology%20and%20the%20homology%20cobordism%20group&rft.jtitle=arXiv.org&rft.au=Nozaki,%20Yuta&rft.date=2022-01-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.04001&rft_dat=%3Cproquest%3E2224154428%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-6e741353d3aba1d7c8d37396fa81d9a9877ee1dbbd5f57b4596bb54f33f218003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224154428&rft_id=info:pmid/&rfr_iscdi=true