Loading…
An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants
—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vi...
Saved in:
Published in: | Biophysics (Oxford) 2019, Vol.64 (1), p.1-6 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3 |
container_end_page | 6 |
container_issue | 1 |
container_start_page | 1 |
container_title | Biophysics (Oxford) |
container_volume | 64 |
creator | Simonenko, E. Yu Pryadun, V. V. Ivanova, A. A. Burmistrova, E. V. Vasiliev, A. N. Yakovenko, S. A. |
description | —The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol. |
doi_str_mv | 10.1134/S0006350919010172 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224404786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224404786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7fiTHKjylIg6Uc7SJNyRVGxfbPfTvcVQkDojTajSP1Qwh15zdcp7Lu3fGmM4VK3nJOONGnJAZV0plWit5SmYTnU38ObkIYc0Yl0yqGYHFSBd2gAbi0NIKNs4PW4z-QF8x9s7S6Og9RvTbYUQae6SrPgFnDyNsJ0cPHtrEDyEFBOo6WvmD23kXsY0wxnBJzjrYBLz6uXPy8fiwqp6z5dvTS7VYZq3QhcjKtil0iQVibpg1prNgpClZ00gomzzHQhmZgBUCQNpWIOhWg1KmK41lTT4nN8fc9PtrjyHWa7f3Y3pZCyFkqmsKnVT8qGq9C8FjV-9SYfCHmrN6WrL-s2TyiKMnJO34if43-X_TN0sodis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224404786</pqid></control><display><type>article</type><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><source>Springer Nature</source><creator>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</creator><creatorcontrib>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</creatorcontrib><description>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</description><identifier>ISSN: 0006-3509</identifier><identifier>EISSN: 1555-6654</identifier><identifier>DOI: 10.1134/S0006350919010172</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic ; Biological and Medical Physics ; Biophysics ; Calorimetry ; Cryoprotectors ; Entropy ; Freezing ; Glycerol ; Molecular Biophysics ; Phase transitions ; Physics ; Physics and Astronomy ; Temperature ; Thawing ; Toxicity ; Viscosity ; Vitrification</subject><ispartof>Biophysics (Oxford), 2019, Vol.64 (1), p.1-6</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</citedby><cites>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Simonenko, E. Yu</creatorcontrib><creatorcontrib>Pryadun, V. V.</creatorcontrib><creatorcontrib>Ivanova, A. A.</creatorcontrib><creatorcontrib>Burmistrova, E. V.</creatorcontrib><creatorcontrib>Vasiliev, A. N.</creatorcontrib><creatorcontrib>Yakovenko, S. A.</creatorcontrib><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><title>Biophysics (Oxford)</title><addtitle>BIOPHYSICS</addtitle><description>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</description><subject>Adiabatic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Calorimetry</subject><subject>Cryoprotectors</subject><subject>Entropy</subject><subject>Freezing</subject><subject>Glycerol</subject><subject>Molecular Biophysics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature</subject><subject>Thawing</subject><subject>Toxicity</subject><subject>Viscosity</subject><subject>Vitrification</subject><issn>0006-3509</issn><issn>1555-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7fiTHKjylIg6Uc7SJNyRVGxfbPfTvcVQkDojTajSP1Qwh15zdcp7Lu3fGmM4VK3nJOONGnJAZV0plWit5SmYTnU38ObkIYc0Yl0yqGYHFSBd2gAbi0NIKNs4PW4z-QF8x9s7S6Og9RvTbYUQae6SrPgFnDyNsJ0cPHtrEDyEFBOo6WvmD23kXsY0wxnBJzjrYBLz6uXPy8fiwqp6z5dvTS7VYZq3QhcjKtil0iQVibpg1prNgpClZ00gomzzHQhmZgBUCQNpWIOhWg1KmK41lTT4nN8fc9PtrjyHWa7f3Y3pZCyFkqmsKnVT8qGq9C8FjV-9SYfCHmrN6WrL-s2TyiKMnJO34if43-X_TN0sodis</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Simonenko, E. Yu</creator><creator>Pryadun, V. V.</creator><creator>Ivanova, A. A.</creator><creator>Burmistrova, E. V.</creator><creator>Vasiliev, A. N.</creator><creator>Yakovenko, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>2019</creationdate><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><author>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiabatic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Calorimetry</topic><topic>Cryoprotectors</topic><topic>Entropy</topic><topic>Freezing</topic><topic>Glycerol</topic><topic>Molecular Biophysics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature</topic><topic>Thawing</topic><topic>Toxicity</topic><topic>Viscosity</topic><topic>Vitrification</topic><toplevel>online_resources</toplevel><creatorcontrib>Simonenko, E. Yu</creatorcontrib><creatorcontrib>Pryadun, V. V.</creatorcontrib><creatorcontrib>Ivanova, A. A.</creatorcontrib><creatorcontrib>Burmistrova, E. V.</creatorcontrib><creatorcontrib>Vasiliev, A. N.</creatorcontrib><creatorcontrib>Yakovenko, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biophysics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonenko, E. Yu</au><au>Pryadun, V. V.</au><au>Ivanova, A. A.</au><au>Burmistrova, E. V.</au><au>Vasiliev, A. N.</au><au>Yakovenko, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</atitle><jtitle>Biophysics (Oxford)</jtitle><stitle>BIOPHYSICS</stitle><date>2019</date><risdate>2019</risdate><volume>64</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0006-3509</issn><eissn>1555-6654</eissn><abstract>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006350919010172</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3509 |
ispartof | Biophysics (Oxford), 2019, Vol.64 (1), p.1-6 |
issn | 0006-3509 1555-6654 |
language | eng |
recordid | cdi_proquest_journals_2224404786 |
source | Springer Nature |
subjects | Adiabatic Biological and Medical Physics Biophysics Calorimetry Cryoprotectors Entropy Freezing Glycerol Molecular Biophysics Phase transitions Physics Physics and Astronomy Temperature Thawing Toxicity Viscosity Vitrification |
title | An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adiabatic%20Calorimetry%20Method%20to%20Determine%20the%20Thermodynamic%20Characteristics%20of%20Cryoprotectants&rft.jtitle=Biophysics%20(Oxford)&rft.au=Simonenko,%20E.%20Yu&rft.date=2019&rft.volume=64&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0006-3509&rft.eissn=1555-6654&rft_id=info:doi/10.1134/S0006350919010172&rft_dat=%3Cproquest_cross%3E2224404786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224404786&rft_id=info:pmid/&rfr_iscdi=true |