Loading…

An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants

—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vi...

Full description

Saved in:
Bibliographic Details
Published in:Biophysics (Oxford) 2019, Vol.64 (1), p.1-6
Main Authors: Simonenko, E. Yu, Pryadun, V. V., Ivanova, A. A., Burmistrova, E. V., Vasiliev, A. N., Yakovenko, S. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3
cites cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3
container_end_page 6
container_issue 1
container_start_page 1
container_title Biophysics (Oxford)
container_volume 64
creator Simonenko, E. Yu
Pryadun, V. V.
Ivanova, A. A.
Burmistrova, E. V.
Vasiliev, A. N.
Yakovenko, S. A.
description —The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.
doi_str_mv 10.1134/S0006350919010172
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224404786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224404786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7fiTHKjylIg6Uc7SJNyRVGxfbPfTvcVQkDojTajSP1Qwh15zdcp7Lu3fGmM4VK3nJOONGnJAZV0plWit5SmYTnU38ObkIYc0Yl0yqGYHFSBd2gAbi0NIKNs4PW4z-QF8x9s7S6Og9RvTbYUQae6SrPgFnDyNsJ0cPHtrEDyEFBOo6WvmD23kXsY0wxnBJzjrYBLz6uXPy8fiwqp6z5dvTS7VYZq3QhcjKtil0iQVibpg1prNgpClZ00gomzzHQhmZgBUCQNpWIOhWg1KmK41lTT4nN8fc9PtrjyHWa7f3Y3pZCyFkqmsKnVT8qGq9C8FjV-9SYfCHmrN6WrL-s2TyiKMnJO34if43-X_TN0sodis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224404786</pqid></control><display><type>article</type><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><source>Springer Nature</source><creator>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</creator><creatorcontrib>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</creatorcontrib><description>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</description><identifier>ISSN: 0006-3509</identifier><identifier>EISSN: 1555-6654</identifier><identifier>DOI: 10.1134/S0006350919010172</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adiabatic ; Biological and Medical Physics ; Biophysics ; Calorimetry ; Cryoprotectors ; Entropy ; Freezing ; Glycerol ; Molecular Biophysics ; Phase transitions ; Physics ; Physics and Astronomy ; Temperature ; Thawing ; Toxicity ; Viscosity ; Vitrification</subject><ispartof>Biophysics (Oxford), 2019, Vol.64 (1), p.1-6</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</citedby><cites>FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Simonenko, E. Yu</creatorcontrib><creatorcontrib>Pryadun, V. V.</creatorcontrib><creatorcontrib>Ivanova, A. A.</creatorcontrib><creatorcontrib>Burmistrova, E. V.</creatorcontrib><creatorcontrib>Vasiliev, A. N.</creatorcontrib><creatorcontrib>Yakovenko, S. A.</creatorcontrib><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><title>Biophysics (Oxford)</title><addtitle>BIOPHYSICS</addtitle><description>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</description><subject>Adiabatic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Calorimetry</subject><subject>Cryoprotectors</subject><subject>Entropy</subject><subject>Freezing</subject><subject>Glycerol</subject><subject>Molecular Biophysics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature</subject><subject>Thawing</subject><subject>Toxicity</subject><subject>Viscosity</subject><subject>Vitrification</subject><issn>0006-3509</issn><issn>1555-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7fiTHKjylIg6Uc7SJNyRVGxfbPfTvcVQkDojTajSP1Qwh15zdcp7Lu3fGmM4VK3nJOONGnJAZV0plWit5SmYTnU38ObkIYc0Yl0yqGYHFSBd2gAbi0NIKNs4PW4z-QF8x9s7S6Og9RvTbYUQae6SrPgFnDyNsJ0cPHtrEDyEFBOo6WvmD23kXsY0wxnBJzjrYBLz6uXPy8fiwqp6z5dvTS7VYZq3QhcjKtil0iQVibpg1prNgpClZ00gomzzHQhmZgBUCQNpWIOhWg1KmK41lTT4nN8fc9PtrjyHWa7f3Y3pZCyFkqmsKnVT8qGq9C8FjV-9SYfCHmrN6WrL-s2TyiKMnJO34if43-X_TN0sodis</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Simonenko, E. Yu</creator><creator>Pryadun, V. V.</creator><creator>Ivanova, A. A.</creator><creator>Burmistrova, E. V.</creator><creator>Vasiliev, A. N.</creator><creator>Yakovenko, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>2019</creationdate><title>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</title><author>Simonenko, E. Yu ; Pryadun, V. V. ; Ivanova, A. A. ; Burmistrova, E. V. ; Vasiliev, A. N. ; Yakovenko, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiabatic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Calorimetry</topic><topic>Cryoprotectors</topic><topic>Entropy</topic><topic>Freezing</topic><topic>Glycerol</topic><topic>Molecular Biophysics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature</topic><topic>Thawing</topic><topic>Toxicity</topic><topic>Viscosity</topic><topic>Vitrification</topic><toplevel>online_resources</toplevel><creatorcontrib>Simonenko, E. Yu</creatorcontrib><creatorcontrib>Pryadun, V. V.</creatorcontrib><creatorcontrib>Ivanova, A. A.</creatorcontrib><creatorcontrib>Burmistrova, E. V.</creatorcontrib><creatorcontrib>Vasiliev, A. N.</creatorcontrib><creatorcontrib>Yakovenko, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biophysics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonenko, E. Yu</au><au>Pryadun, V. V.</au><au>Ivanova, A. A.</au><au>Burmistrova, E. V.</au><au>Vasiliev, A. N.</au><au>Yakovenko, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants</atitle><jtitle>Biophysics (Oxford)</jtitle><stitle>BIOPHYSICS</stitle><date>2019</date><risdate>2019</risdate><volume>64</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0006-3509</issn><eissn>1555-6654</eissn><abstract>—The efficiency of cryoprotectants used to protect cells from damage is usually evaluated by the changes in vital cell parameters after a freezing–thawing cycle. Certain physical parameters, such as the glass transition temperature, viscosity, toxicity, and the minimum concentration necessary for vitrification, are known for several components of cryoprotectants. However, it is impossible to provide physicochemical characteristics for a medium that contains both penetrating and nonpenetrating cryoprotective agents. An adiabatic calorimetry method adapted to studying liquid media was used to describe the temperature dependence of the heat capacity and to find the temperatures of the phase transition and changes in the state of aggregation for a glycerol-containing solution, which is commonly used as a basic component of cryoprotectants, and for a commercial cryoprotectant. Changes in entropy and enthalpy in the commercial cryoprotectant were 1.5 times higher than in aqueous solutions of glycerol.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006350919010172</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3509
ispartof Biophysics (Oxford), 2019, Vol.64 (1), p.1-6
issn 0006-3509
1555-6654
language eng
recordid cdi_proquest_journals_2224404786
source Springer Nature
subjects Adiabatic
Biological and Medical Physics
Biophysics
Calorimetry
Cryoprotectors
Entropy
Freezing
Glycerol
Molecular Biophysics
Phase transitions
Physics
Physics and Astronomy
Temperature
Thawing
Toxicity
Viscosity
Vitrification
title An Adiabatic Calorimetry Method to Determine the Thermodynamic Characteristics of Cryoprotectants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adiabatic%20Calorimetry%20Method%20to%20Determine%20the%20Thermodynamic%20Characteristics%20of%20Cryoprotectants&rft.jtitle=Biophysics%20(Oxford)&rft.au=Simonenko,%20E.%20Yu&rft.date=2019&rft.volume=64&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0006-3509&rft.eissn=1555-6654&rft_id=info:doi/10.1134/S0006350919010172&rft_dat=%3Cproquest_cross%3E2224404786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2682-9cb869e8ee370d77fda74790bb4a9b33e8574bb4d22aa4dc2ea6c6a557f97d0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224404786&rft_id=info:pmid/&rfr_iscdi=true