Loading…
K-Athena: a performance portable structured grid finite volume magnetohydrodynamics code
Large scale simulations are a key pillar of modern research and require ever-increasing computational resources. Different novel manycore architectures have emerged in recent years on the way towards the exascale era. Performance portability is required to prevent repeated non-trivial refactoring of...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large scale simulations are a key pillar of modern research and require ever-increasing computational resources. Different novel manycore architectures have emerged in recent years on the way towards the exascale era. Performance portability is required to prevent repeated non-trivial refactoring of a code for different architectures. We combine Athena++, an existing magnetohydrodynamics (MHD) CPU code, with Kokkos, a performance portable on-node parallel programming paradigm, into K-Athena to allow efficient simulations on multiple architectures using a single codebase. We present profiling and scaling results for different platforms including Intel Skylake CPUs, Intel Xeon Phis, and NVIDIA GPUs. K-Athena achieves \(>10^8\) cell-updates/s on a single V100 GPU for second-order double precision MHD calculations, and a speedup of 30 on up to 24,576 GPUs on Summit (compared to 172,032 CPU cores), reaching \(1.94\times10^{12}\) total cell-updates/s at 76% parallel efficiency. Using a roofline analysis we demonstrate that the overall performance is currently limited by DRAM bandwidth and calculate a performance portability metric of 62.8%. Finally, we present the implementation strategies used and the challenges encountered in maximizing performance. This will provide other research groups with a straightforward approach to prepare their own codes for the exascale era. K-Athena is available at https://gitlab.com/pgrete/kathena . |
---|---|
ISSN: | 2331-8422 |