Loading…
Explicit approximation of stochastic optimal feedback control for combined therapy of cancer
In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alamir, Mazen |
description | In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular shown that the introduction of a variance-related penalty in the latter induces better results that cope with the consequences of softening the health safety constraints in the cost function. The convergence of the value function iteration is revisited in the presence of the variance related term. The implementation involves some Machine Learning tools in order to represent the optimal function and to perform complexity reduction by clustering. Quantitative illustration is given using a commonly used model of combined therapy involving twelve highly uncertain parameters. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224721939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224721939</sourcerecordid><originalsourceid>FETCH-proquest_journals_22247219393</originalsourceid><addsrcrecordid>eNqNjdEKgjAYhUcQJOU7DLoW9J9mXofRA3QZyJwTZ7p_bRPs7VvQA3R1Duc7h7MhETCWJeccYEdi58Y0TeFUQlGwiDzq1UxKKE-5MRZXNXOvUFPsqfMoBu68EhSND2CivZRdy8WTCtTeYgjQBj-3SsuO-kFabt7freBaSHsg255PTsY_3ZPjtb5fbkl4ei3S-WbExeqAGgDIS8gqVrH_Wh9SLERM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224721939</pqid></control><display><type>article</type><title>Explicit approximation of stochastic optimal feedback control for combined therapy of cancer</title><source>Publicly Available Content Database</source><creator>Alamir, Mazen</creator><creatorcontrib>Alamir, Mazen</creatorcontrib><description>In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular shown that the introduction of a variance-related penalty in the latter induces better results that cope with the consequences of softening the health safety constraints in the cost function. The convergence of the value function iteration is revisited in the presence of the variance related term. The implementation involves some Machine Learning tools in order to represent the optimal function and to perform complexity reduction by clustering. Quantitative illustration is given using a commonly used model of combined therapy involving twelve highly uncertain parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Chemotherapy ; Clustering ; Dynamic programming ; Feedback control ; Iterative methods ; Machine learning ; Parameter uncertainty</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2224721939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alamir, Mazen</creatorcontrib><title>Explicit approximation of stochastic optimal feedback control for combined therapy of cancer</title><title>arXiv.org</title><description>In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular shown that the introduction of a variance-related penalty in the latter induces better results that cope with the consequences of softening the health safety constraints in the cost function. The convergence of the value function iteration is revisited in the presence of the variance related term. The implementation involves some Machine Learning tools in order to represent the optimal function and to perform complexity reduction by clustering. Quantitative illustration is given using a commonly used model of combined therapy involving twelve highly uncertain parameters.</description><subject>Cancer</subject><subject>Chemotherapy</subject><subject>Clustering</subject><subject>Dynamic programming</subject><subject>Feedback control</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Parameter uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjdEKgjAYhUcQJOU7DLoW9J9mXofRA3QZyJwTZ7p_bRPs7VvQA3R1Duc7h7MhETCWJeccYEdi58Y0TeFUQlGwiDzq1UxKKE-5MRZXNXOvUFPsqfMoBu68EhSND2CivZRdy8WTCtTeYgjQBj-3SsuO-kFabt7freBaSHsg255PTsY_3ZPjtb5fbkl4ei3S-WbExeqAGgDIS8gqVrH_Wh9SLERM</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Alamir, Mazen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201023</creationdate><title>Explicit approximation of stochastic optimal feedback control for combined therapy of cancer</title><author>Alamir, Mazen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22247219393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cancer</topic><topic>Chemotherapy</topic><topic>Clustering</topic><topic>Dynamic programming</topic><topic>Feedback control</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Parameter uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Alamir, Mazen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alamir, Mazen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Explicit approximation of stochastic optimal feedback control for combined therapy of cancer</atitle><jtitle>arXiv.org</jtitle><date>2020-10-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, a tractable methodology is proposed to approximate stochastic optimal feedback treatment in the context of mixed immuno-chemo therapy of cancer. The method uses a fixed-point value iteration that approximately solves a stochastic dynamic programming-like equation. It is in particular shown that the introduction of a variance-related penalty in the latter induces better results that cope with the consequences of softening the health safety constraints in the cost function. The convergence of the value function iteration is revisited in the presence of the variance related term. The implementation involves some Machine Learning tools in order to represent the optimal function and to perform complexity reduction by clustering. Quantitative illustration is given using a commonly used model of combined therapy involving twelve highly uncertain parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2224721939 |
source | Publicly Available Content Database |
subjects | Cancer Chemotherapy Clustering Dynamic programming Feedback control Iterative methods Machine learning Parameter uncertainty |
title | Explicit approximation of stochastic optimal feedback control for combined therapy of cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Explicit%20approximation%20of%20stochastic%20optimal%20feedback%20control%20for%20combined%20therapy%20of%20cancer&rft.jtitle=arXiv.org&rft.au=Alamir,%20Mazen&rft.date=2020-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2224721939%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22247219393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224721939&rft_id=info:pmid/&rfr_iscdi=true |