Loading…

Dynamics of individual Brownian rods in a microchannel flow

We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-05
Main Authors: Zöttl, Andreas, Klop, Kira E, Balin, Andrew K, Gao, Yongxiang, Yeomans, Julia M, Dirk G A L Aarts
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zöttl, Andreas
Klop, Kira E
Balin, Andrew K
Gao, Yongxiang
Yeomans, Julia M
Dirk G A L Aarts
description We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.
doi_str_mv 10.48550/arxiv.1905.05020
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224730404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224730404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMgWGofwF3A9dQ7N7mdGVxp1SoU3HRf7uQHU8ZEE6fVt3dAV2dxDt8nxFUNS90SwQ3n73Bc1h3QEggQzsQMlaqrViNeiEUpBwDAVYNEaiZuH34ivwdTZPIyRBuOwY48yPucTjFwlDnZMgnJcqpyMm8coxukH9LpUpx7Hopb_HMudk-Pu_VztX3dvKzvthUT6or6tsfW-hWz817brm4aImuRG-PAuY47Mg1qXffkJ9dy3xnrDCnLhtirubj-m_3I6XN05Wt_SGOO0-MeEXWjQINWv_zpSh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224730404</pqid></control><display><type>article</type><title>Dynamics of individual Brownian rods in a microchannel flow</title><source>Publicly Available Content (ProQuest)</source><creator>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</creator><creatorcontrib>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</creatorcontrib><description>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.05020</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Microchannels ; Microfluidics ; Orbits ; Rods ; Silicon dioxide ; Tumbling</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2224730404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zöttl, Andreas</creatorcontrib><creatorcontrib>Klop, Kira E</creatorcontrib><creatorcontrib>Balin, Andrew K</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Dirk G A L Aarts</creatorcontrib><title>Dynamics of individual Brownian rods in a microchannel flow</title><title>arXiv.org</title><description>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</description><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Orbits</subject><subject>Rods</subject><subject>Silicon dioxide</subject><subject>Tumbling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEURoMgWGofwF3A9dQ7N7mdGVxp1SoU3HRf7uQHU8ZEE6fVt3dAV2dxDt8nxFUNS90SwQ3n73Bc1h3QEggQzsQMlaqrViNeiEUpBwDAVYNEaiZuH34ivwdTZPIyRBuOwY48yPucTjFwlDnZMgnJcqpyMm8coxukH9LpUpx7Hopb_HMudk-Pu_VztX3dvKzvthUT6or6tsfW-hWz817brm4aImuRG-PAuY47Mg1qXffkJ9dy3xnrDCnLhtirubj-m_3I6XN05Wt_SGOO0-MeEXWjQINWv_zpSh0</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Zöttl, Andreas</creator><creator>Klop, Kira E</creator><creator>Balin, Andrew K</creator><creator>Gao, Yongxiang</creator><creator>Yeomans, Julia M</creator><creator>Dirk G A L Aarts</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190513</creationdate><title>Dynamics of individual Brownian rods in a microchannel flow</title><author>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Orbits</topic><topic>Rods</topic><topic>Silicon dioxide</topic><topic>Tumbling</topic><toplevel>online_resources</toplevel><creatorcontrib>Zöttl, Andreas</creatorcontrib><creatorcontrib>Klop, Kira E</creatorcontrib><creatorcontrib>Balin, Andrew K</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Dirk G A L Aarts</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zöttl, Andreas</au><au>Klop, Kira E</au><au>Balin, Andrew K</au><au>Gao, Yongxiang</au><au>Yeomans, Julia M</au><au>Dirk G A L Aarts</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of individual Brownian rods in a microchannel flow</atitle><jtitle>arXiv.org</jtitle><date>2019-05-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.05020</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2224730404
source Publicly Available Content (ProQuest)
subjects Microchannels
Microfluidics
Orbits
Rods
Silicon dioxide
Tumbling
title Dynamics of individual Brownian rods in a microchannel flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20individual%20Brownian%20rods%20in%20a%20microchannel%20flow&rft.jtitle=arXiv.org&rft.au=Z%C3%B6ttl,%20Andreas&rft.date=2019-05-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.05020&rft_dat=%3Cproquest%3E2224730404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224730404&rft_id=info:pmid/&rfr_iscdi=true