Loading…
Dynamics of individual Brownian rods in a microchannel flow
We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zöttl, Andreas Klop, Kira E Balin, Andrew K Gao, Yongxiang Yeomans, Julia M Dirk G A L Aarts |
description | We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period. |
doi_str_mv | 10.48550/arxiv.1905.05020 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224730404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224730404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMgWGofwF3A9dQ7N7mdGVxp1SoU3HRf7uQHU8ZEE6fVt3dAV2dxDt8nxFUNS90SwQ3n73Bc1h3QEggQzsQMlaqrViNeiEUpBwDAVYNEaiZuH34ivwdTZPIyRBuOwY48yPucTjFwlDnZMgnJcqpyMm8coxukH9LpUpx7Hopb_HMudk-Pu_VztX3dvKzvthUT6or6tsfW-hWz817brm4aImuRG-PAuY47Mg1qXffkJ9dy3xnrDCnLhtirubj-m_3I6XN05Wt_SGOO0-MeEXWjQINWv_zpSh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224730404</pqid></control><display><type>article</type><title>Dynamics of individual Brownian rods in a microchannel flow</title><source>Publicly Available Content (ProQuest)</source><creator>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</creator><creatorcontrib>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</creatorcontrib><description>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.05020</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Microchannels ; Microfluidics ; Orbits ; Rods ; Silicon dioxide ; Tumbling</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2224730404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zöttl, Andreas</creatorcontrib><creatorcontrib>Klop, Kira E</creatorcontrib><creatorcontrib>Balin, Andrew K</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Dirk G A L Aarts</creatorcontrib><title>Dynamics of individual Brownian rods in a microchannel flow</title><title>arXiv.org</title><description>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</description><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Orbits</subject><subject>Rods</subject><subject>Silicon dioxide</subject><subject>Tumbling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEURoMgWGofwF3A9dQ7N7mdGVxp1SoU3HRf7uQHU8ZEE6fVt3dAV2dxDt8nxFUNS90SwQ3n73Bc1h3QEggQzsQMlaqrViNeiEUpBwDAVYNEaiZuH34ivwdTZPIyRBuOwY48yPucTjFwlDnZMgnJcqpyMm8coxukH9LpUpx7Hopb_HMudk-Pu_VztX3dvKzvthUT6or6tsfW-hWz817brm4aImuRG-PAuY47Mg1qXffkJ9dy3xnrDCnLhtirubj-m_3I6XN05Wt_SGOO0-MeEXWjQINWv_zpSh0</recordid><startdate>20190513</startdate><enddate>20190513</enddate><creator>Zöttl, Andreas</creator><creator>Klop, Kira E</creator><creator>Balin, Andrew K</creator><creator>Gao, Yongxiang</creator><creator>Yeomans, Julia M</creator><creator>Dirk G A L Aarts</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190513</creationdate><title>Dynamics of individual Brownian rods in a microchannel flow</title><author>Zöttl, Andreas ; Klop, Kira E ; Balin, Andrew K ; Gao, Yongxiang ; Yeomans, Julia M ; Dirk G A L Aarts</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Orbits</topic><topic>Rods</topic><topic>Silicon dioxide</topic><topic>Tumbling</topic><toplevel>online_resources</toplevel><creatorcontrib>Zöttl, Andreas</creatorcontrib><creatorcontrib>Klop, Kira E</creatorcontrib><creatorcontrib>Balin, Andrew K</creatorcontrib><creatorcontrib>Gao, Yongxiang</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Dirk G A L Aarts</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zöttl, Andreas</au><au>Klop, Kira E</au><au>Balin, Andrew K</au><au>Gao, Yongxiang</au><au>Yeomans, Julia M</au><au>Dirk G A L Aarts</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of individual Brownian rods in a microchannel flow</atitle><jtitle>arXiv.org</jtitle><date>2019-05-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the orientational dynamics of heavy silica microrods flowing through a microfluidic channel. Comparing experiments and Brownian dynamics simulations we identify different particle orbits, in particular in-plane tumbling behavior, which cannot be explained by classical Jeffery theory, and we relate this behavior to the rotational diffusion of the rods. By constructing the full, three-dimensional, orientation distribution, we describe the rod trajectories and quantify the persistence of Jeffery orbits using temporal correlation functions of the Jeffery constant. We find that our colloidal rods lose memory of their initial configuration in about a second, corresponding to half a Jeffery period.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.05020</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2224730404 |
source | Publicly Available Content (ProQuest) |
subjects | Microchannels Microfluidics Orbits Rods Silicon dioxide Tumbling |
title | Dynamics of individual Brownian rods in a microchannel flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20individual%20Brownian%20rods%20in%20a%20microchannel%20flow&rft.jtitle=arXiv.org&rft.au=Z%C3%B6ttl,%20Andreas&rft.date=2019-05-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.05020&rft_dat=%3Cproquest%3E2224730404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-5b8b28df6aaeff4d917755dd2a7ce0ee9a95c72441b5f1778ab9cdec53dac5af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2224730404&rft_id=info:pmid/&rfr_iscdi=true |